Skip to main content
Log in

Induction of perineural invasion in salivary adenoid cystic carcinoma by circular RNA RNF111

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Objective

Local recurrence, distant metastasis, and perineural invasion (PNI) viciously occur in salivary adenoid cystic carcinoma (SACC), resulting in a poor prognosis. This study aimed to explore the mechanism by which circular RNA RNF111 (circ-RNF111) regulates PNI in SACC by targeting the miR-361-5p/high mobility group box 2 (HMGB2) axis.

Method

Circ-RNF111 and HMGB2 were highly expressed in SACC specimens, while miR-361-5p was underexpressed. Functional experiments showed that ablating circ-RNF111 or promoting miR-361-5p hindered the biological functions and PNI of SACC-LM cells.

Results

HMGB2 overexpression induced the reversal of SACC-LM cell biological functions and PNI caused by circ-RNF111 knockout. Furthermore, reduction of circ-RNF111 suppressed PNI in a SACC xenograft model. Circ-RNF111 regulated HMGB2 expression through targeted modulation of miR-361-5p.

Conclusion

Taken together, circ-RNF111 stimulates PNI in SACC by miR-361-5p/HMGB2 axis and may serve as a potential therapeutic target for SACC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and materials used to support the findings of this study are available from the corresponding author.

References

  1. Li H, Yang Z, Wang W, Wang J, Zhang J, Liu J, et al. NT-3/TrkC axis contributes to the perineural invasion and the poor prognosis in human salivary adenoid cystic carcinoma. J Cancer. 2019;10(24):6065–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu X, Yang X, Zhan C, Zhang Y, Hou J, Yin X. Perineural invasion in adenoid cystic carcinoma of the salivary glands: Where we are and where we need to go. Front Oncol. 2020;10:1493.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sahara S, Herzog AE, Nör JE. Systemic therapies for salivary gland adenoid cystic carcinoma. Am J Cancer Res. 2021;11(9):4092–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang XY, Gan RH, Xie J, She L, Zhao Y, Ding LC, et al. The oncogenic effects of HES1 on salivary adenoid cystic carcinoma cell growth and metastasis. BMC Cancer. 2018;18(1):436.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yan F, Wang C, Li T, Cai W, Sun J. Role of miR-21 in the growth and metastasis of human salivary adenoid cystic carcinoma. Mol Med Rep. 2018;17(3):4237–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang M, Li ZF, Wang HF, Wang SS, Yu XH, Wu JB, et al. MIF promotes perineural invasion through EMT in salivary adenoid cystic carcinoma. Mol Carcinog. 2019;58(6):898–912.

    Article  CAS  PubMed  Google Scholar 

  7. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206.

    Article  CAS  PubMed  Google Scholar 

  8. Han J, Han N, Xu Z, Zhang C, Liu J, Ruan M. Expression profile of circular RNA and construction of circular RNA-Micro RNA network in salivary adenoid cystic carcinoma. Cancer Cell Int. 2021;21(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen B, Huang S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett. 2018;418:41–50.

    Article  CAS  PubMed  Google Scholar 

  10. Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018;17(1):79.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salzman J, Circular RNA. Expression: Its potential regulation and function. Trends Genet. 2016;32(5):309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Ma XP, Li X, Deng FS. Circular RNA circ_0067934 exhaustion expedites cell apoptosis and represses cell proliferation, migration and invasion in thyroid cancer via sponging miR-1304 and regulating CXCR1 expression. Eur Rev Med Pharmacol Sci. 2019;23(24):10851–66.

    CAS  PubMed  Google Scholar 

  13. Xing C, Ye H, Wang W, Sun M, Zhang J, Zhao Z, et al. Circular RNA ADAM9 facilitates the malignant behaviours of pancreatic cancer by sponging miR-217 and upregulating PRSS3 expression. Artif Cells Nanomed Biotechnol. 2019;47(1):3920–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao F, Chen CW, Yang WW, Xu LH, Du ZH, Ge XY, et al. Hsa_circRNA_0059655 plays a role in salivary adenoid cystic carcinoma by functioning as a sponge of miR-338-3p. Cell Mol Biol (Noisy-le-grand). 2018;64(15):100–6.

    Article  PubMed  Google Scholar 

  15. Tang YY, Zhao P, Zou TN, Duan JJ, Zhi R, Yang SY, et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 2017;36(11):901–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Jiang Z, Zhou J, Liu Z. circRNA RNF111 regulates the growth, migration and invasion of gastric cancer cells by binding to miR-27b-3p. Int J Mol Med. 2020;46(5):1873–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ju R, Huang Y, Guo Z, Han L, Ji S, Zhao L, et al. The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells. Mol Cell Biochem. 2021;476(2):1269–82.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: Emerging driver of cancer perineural invasion. Cell Biosci. 2021;11(1):117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang M, Wu JS, Xian HC, Chen BJ, Wang HF, Yu XH, et al. CXCR5 induces perineural invasion of salivary adenoid cystic carcinoma by inhibiting microRNA-187. Aging (Albany NY). 2021;13(11):15384–99.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Y, Qiu L, He GL, Cai L, Peng BJ, Cao YL, et al. MicroRNA-361-5p suppresses the tumorigenesis of hepatocellular carcinoma through targeting WT1 and suppressing WNT/β-cadherin pathway. Eur Rev Med Pharmacol Sci. 2019;23(20):8823–32.

    CAS  PubMed  Google Scholar 

  21. Jiang S, Liu H, Zhang J, Zhang F, Fan J, Liu Y. MMP1 regulated by NEAT1/miR-361-5p axis facilitates the proliferation and migration of cutaneous squamous cell carcinoma via the activation of Wnt pathway. Cancer Biol Ther. 2021;22(5–6):381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian B, Zhang D, Tao R, Yu G, Jia B, Ye K, et al. MiR-361-5p exerts tumor-suppressing functions in gastric carcinoma by targeting syndecan-binding protein. Anticancer Drugs. 2020;31(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Lu Y, Gao S. High-mobility group box 2 promoted proliferation of cervical cancer cells by activating AKT signaling pathway. J Cell Biochem. 2019;120(10):17345–53.

    Article  CAS  PubMed  Google Scholar 

  24. Cui G, Cai F, Ding Z, Gao L. HMGB2 promotes the malignancy of human gastric cancer and indicates poor survival outcome. Hum Pathol. 2019;84:133–41.

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Zhang H, Wang Y. Centromere protein U facilitates metastasis of ovarian cancer cells by targeting high mobility group box 2 expression. Am J Cancer Res. 2018;8(5):835–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang W, Li L, Zhao L. LINC00184 plays an oncogenic role in non-small cell lung cancer via regulation of the miR-524-5p/HMGB2 axis. J Cell Mol Med. 2021;25(21):9927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang C, Wang J, Liu A, Wu Y. Tumor promoting long non-coding RNA CASC15 affects HMGB2 expression by sponging miR-582-5p in colorectal cancer. J Gene Med. 2022;24(6): e3308.

    Article  CAS  PubMed  Google Scholar 

  28. Xu P, Cheng S, Wang X, Jiang S, He X, Tang L, et al. The hsa_circ_0039857/miR-338-3p/RAB32 axis promotes the malignant progression of colorectal cancer. BMC Gastroenterol. 2022;22(1):530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan J, Pan W, Chen H, Du Y, Jiang P, Zeng D, et al. Circ_0124644 serves as a ceRNA for miR-590-3p to promote hypoxia-induced cardiomyocytes injury via regulating SOX4. Front Genet. 2021;12: 667724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang F, Pei Y, Xu W, Rong L. hsa_circ_0003176 suppresses the progression of non-small-cell lung cancer via regulating mir-182-5p/RBM5 axis. Dis Markers. 2022;2022:8402116.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu X, Wang S, Wang H, Pan C, Yang W, Yu J. Hsa_circ_0008434 regulates USP9X expression by sponging miR-6838-5p to promote gastric cancer growth, migration and invasion. BMC Cancer. 2021;21(1):1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du Y, Lv D, Cui B, Li X, Chen H, Kang Y, et al. Protein kinase D1 induced epithelial-mesenchymal transition and invasion in salivary adenoid cystic carcinoma via E-cadherin/Snail regulation. Oral Dis. 2022;28(6):1539–54.

    Article  PubMed  Google Scholar 

  33. Xie H, Tang J, Lu L, Li B, Wang M. CASC9 plays a role in salivary adenoid cystic carcinoma in vitro by upregulation of ACLY. Oral Dis. 2022;28(2):352–63.

    Article  PubMed  Google Scholar 

  34. Lee TL, Chiu PH, Li WY, Yang MH, Wei PY, Chu PY, et al. Nerve-tumour interaction enhances the aggressiveness of oral squamous cell carcinoma. Clin Otolaryngol. 2019;44(6):1087–95.

    Article  PubMed  Google Scholar 

  35. Long N, Chu L, Jia J, Peng S, Gao Y, Yang H, et al. CircPOSTN/miR-361-5p/TPX2 axis regulates cell growth, apoptosis and aerobic glycolysis in glioma cells. Cancer Cell Int. 2020;20:374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Zhang CY, Xia RH, Han J, Sun B, Sun SY, et al. The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma. Cell Death Dis. 2018;9(9):917.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Laurie SA, Ho AL, Fury MG, Sherman E, Pfister DG. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol. 2011;12(8):815–24.

    Article  CAS  PubMed  Google Scholar 

  38. Garg M, Tudor-Green B, Bisase B. Current thinking in the management of adenoid cystic carcinoma of the head and neck. Br J Oral Maxillofac Surg. 2019;57(8):716–21.

    Article  PubMed  Google Scholar 

  39. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: A review of the literature. Cancer. 2009;115(15):3379–91.

    Article  CAS  PubMed  Google Scholar 

  40. Pour PM, Bell RH, Batra SK. Neural invasion in the staging of pancreatic cancer. Pancreas. 2003;26(4):322–5.

    Article  PubMed  Google Scholar 

  41. Feng FY, Qian Y, Stenmark MH, Halverson S, Blas K, Vance S, et al. Perineural invasion predicts increased recurrence, metastasis, and death from prostate cancer following treatment with dose-escalated radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81(4):e361–7.

    Article  PubMed  Google Scholar 

  42. Deng J, You Q, Gao Y, Yu Q, Zhao P, Zheng Y, et al. Prognostic value of perineural invasion in gastric cancer: A systematic review and meta-analysis. PLoS One. 2014;9(2): e88907.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Figueira RC, Gomes LR, Neto JS, Silva FC, Silva ID, Sogayar MC. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer. 2009;9:20.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng SC, Zhang YR, Luo SY, Zhang LP. The effect of GDNF on matrix-degrading and cell-adhesion during perineural invasion of salivary adenoid cystic carcinoma. Shanghai Kou Qiang Yi Xue. 2016;25(2):212–6.

    PubMed  Google Scholar 

  45. Jiang M, Liu X, Zhang C, Zhu L, Wu HD, Dong L, et al. Bioinformatics identification of the candidate microRNAs and construction of a competing endogenous RNA regulatory network in lacrimal gland adenoid cystic carcinoma high-grade transformation. Oncol Lett. 2021;21(5):360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han J, Yu J, Dai Y, Li J, Guo M, Song J, et al. Overexpression of miR-361-5p in triple-negative breast cancer (TNBC) inhibits migration and invasion by targeting RQCD1 and inhibiting the EGFR/PI3K/Akt pathway. Bosn J Basic Med Sci. 2019;19(1):52–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han N, Lu H, Zhang Z, Ruan M, Yang W, Zhang C. Comprehensive and in-depth analysis of microRNA and mRNA expression profile in salivary adenoid cystic carcinoma. Gene. 2018;678:349–60.

    Article  CAS  PubMed  Google Scholar 

  48. Fu D, Li J, Wei J, Zhang Z, Luo Y, Tan H, et al. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun Signal. 2018;16(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongWei Lin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval (Research involving human participants and/or animals) and Informed consent

This study was approved by the Ethics Committee of Longyan People's Hospital (Approval number: 20150308LY), and written informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Zhong, S., Wang, P. et al. Induction of perineural invasion in salivary adenoid cystic carcinoma by circular RNA RNF111. Clin Transl Oncol 25, 3152–3164 (2023). https://doi.org/10.1007/s12094-023-03182-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03182-w

Keywords

Navigation