Skip to main content

Advertisement

Log in

Dual effects of circRNA in thyroid and breast cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

CircRNA, the latest research hotspot in the field of RNA, is a special non-coding RNA molecule, which is unable to encode proteins and bind polyribosomes. As a regulatory molecule, circRNA participates in cancer cell generation and progression mainly through the mechanism of competitive endogenous RNA. In numerous regulated cancer organs, the thyroid and breast are both endocrine organs, and both are regulated by the hypothalamic pituitary gland axis. Thyroid cancer (TC) and breast cancer (BC) are both sexually prevalent in women and both are affected by hormones, thus they are intrinsically linked. In addition, recent epidemiological surveys have found that, early metastasis and recurrence of breast cancer remain the main cause of survival in breast cancer patients. Although at home and abroad, studies have shown that new targeted anti-tumor drugs with numerous tumor markers are gradually being used in the clinic, evidence for potential molecular mechanisms affecting its prognosis lacks clinical studies. Therefore, we search the relevant literature, and based on the latest domestic and international consensus, review the molecular mechanisms and regulation relevance of circRNA, compare the difference of the same circRNA in two tumors, to more deeply understand and lay the foundation for future clinical diagnostic, therapeutic and prognostic studies in large samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Not applicable.

References

  1. Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer. 2018;25(1):1–7. https://doi.org/10.1007/s12282-017-0793-9.

    Article  PubMed  Google Scholar 

  2. Sharma AR, Bhattacharya M, Bhakta S, Saha A, Lee SS, Chakraborty C. Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. Mol Ther Nucleic Acids. 2021;25:355–71. https://doi.org/10.1016/j.omtn.2021.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8. https://doi.org/10.1016/j.cell.2011.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64. https://doi.org/10.1038/nsmb.2959.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18(1):116. https://doi.org/10.1186/s12943-019-1041-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao Q, Yang Y, Ren G, Ge E, Fan C. Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations. IEEE Trans Nanobiosci. 2019;18(4):578–84. https://doi.org/10.1109/TNB.2019.2922214.

    Article  Google Scholar 

  7. Peng N, Shi L, Zhang Q, Hu Y, Wang N, Ye H. Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PLoS ONE. 2017;12(3):e0170287. https://doi.org/10.1371/journal.pone.0170287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lv W, Tan Y, Xiong M, Zhao C, Wang Y, Wu M, et al. Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression. J Transl Med. 2021;19(1):527. https://doi.org/10.1186/s12967-021-03196-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Xue B, Zhang Y, Guo G, Duan X, Dou D. Up-regulated circBACH2 contributes to cell proliferation, invasion, and migration of triple-negative breast cancer. Cell Death Dis. 2021;12(5):412. https://doi.org/10.1038/s41419-021-03684-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cai X, Zhao Z, Dong J, Lv Q, Yun B, Liu J, et al. Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR-139-5p and regulating LMO4 expression. Cell Death Dis. 2019;10(3):184. https://doi.org/10.1038/s41419-019-1439-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sang M, Meng L, Liu S, Ding P, Chang S, Ju Y, et al. Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs. Mol Cancer Res. 2018;16(11):1665–75. https://doi.org/10.1158/1541-7786.MCR-18-0284.

    Article  CAS  PubMed  Google Scholar 

  12. Yang W, Yang X, Wang X, Gu J, Zhou D, Wang Y, et al. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR-7 sponge to down-regulate REGγ. J Cell Mol Med. 2019;23(8):4921–32. https://doi.org/10.1111/jcmm.14305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang W, Gu J, Wang X, Wang Y, Feng M, Zhou D, et al. Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7. J Cell Mol Med. 2019;23(5):3166–77. https://doi.org/10.1111/jcmm.14171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhr K, Sieuwerts AM, de Weerd V, Smid M, Hammerl D, Foekens A, et al. Association of microRNA-7 and its binding partner CDR1-AS with the prognosis and prediction of 1st-line tamoxifen therapy in breast cancer. Sci Rep. 2018;8(1):9657. https://doi.org/10.1038/s41598-018-27987-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han JY, Guo S, Wei N, Xue R, Li W, Dong G, et al. ciRS-7 promotes the proliferation and migration of papillary thyroid cancer by negatively regulating the miR-7/epidermal growth factor receptor axis. Biomed Res Int. 2020;2020:9875636. https://doi.org/10.1155/2020/9875636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qi L, Sun B, Yang B, Lu S. circHIPK3 (hsa_circ_0000284) Promotes Proliferation, Migration and Invasion of Breast Cancer Cells via miR-326. Oncol Targets Ther. 2021;14:3671–85. https://doi.org/10.2147/OTT.S299190.

    Article  Google Scholar 

  17. Luo N, Liu S, Li X, Hu Y, Zhang K. Circular RNA circHIPK3 promotes breast cancer progression via sponging MiR-326. Cell Cycle. 2021;20(13):1320–33. https://doi.org/10.1080/15384101.2021.1939476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen ZG, Zhao HJ, Lin L, Liu JB, Bai JZ, Wang GS. Circular RNA CirCHIPK3 promotes cell proliferation and invasion of breast cancer by sponging miR-193a/HMGB1/PI3K/AKT axis. Thorac Cancer. 2020;11(9):2660–71. https://doi.org/10.1111/1759-7714.13603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong LP, Chen LY, Bai B, Qi XF, Liu JN, Qin S. circ_0067934 promotes the progression of papillary thyroid carcinoma cells through miR-1301-3p/HMGB1 axis. Neoplasma. 2022;69(1):1–15. https://doi.org/10.4149/neo_2021_210608N771.

    Article  CAS  PubMed  Google Scholar 

  20. Shi P, Liu Y, Yang H, Hu B. Breast cancer derived exosomes promoted angiogenesis of endothelial cells in microenvironment via circHIPK3/miR-124-3p/MTDH axis. Cell Signal. 2022;95:110338. https://doi.org/10.1016/j.cellsig.2022.110338.

    Article  CAS  PubMed  Google Scholar 

  21. Ni J, Xi X, Xiao S, Xiao X. Silencing of circHIPK3 sensitizes paclitaxel-resistant breast cancer cells to chemotherapy by regulating HK2 through targeting miR-1286. Cancer Manag Res. 2021;13:5573–85. https://doi.org/10.2147/CMAR.S307595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Yan C, Wang Y. Exosome-mediated transfer of circHIPK3 promotes trastuzumab chemoresistance in breast cancer. J Drug Target. 2021;29(9):1004–15. https://doi.org/10.1080/1061186X.2021.1906882.

    Article  CAS  PubMed  Google Scholar 

  23. Shu T, Yang L, Sun L, Lu J, Zhan X. CircHIPK3 promotes thyroid cancer tumorigenesis and invasion through the Mirna-338-3p/RAB23 Axis. Med Princ Pract. 2020. https://doi.org/10.1159/000512548.10.1159/000512548.

    Article  PubMed  Google Scholar 

  24. Wang S, Xue X, Wang R, Li X, Li Q, Wang Y, et al. CircZNF609 promotes breast cancer cell growth, migration, and invasion by elevating p70S6K1 via sponging miR-145-5p. Cancer Manag Res. 2018;10:3881–90. https://doi.org/10.2147/CMAR.S174778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi P, Liu Y, Yang D, Wu Y, Zhang L, Jing S, et al. CircRNA ZNF609 promotes the growth and metastasis of thyroid cancer in vivo and in vitro by downregulating miR-514a-5p. Bioengineered. 2022;13(2):4372–84. https://doi.org/10.1080/21655979.2022.2033015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang H, Huang X, Wang J, Yang L, Kong Y, Gao G, et al. circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Mol Cancer. 2019;18(1):23. https://doi.org/10.1186/s12943-019-0946-x.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin Y, Yang L, Li X, Liu F. Circular RNA KIF4A promotes cell migration, invasion and inhibits apoptosis through miR-152/ZEB1 axis in breast cancer. Diagn Pathol. 2020;15(1):55. https://doi.org/10.1186/s13000-020-00963-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang J, Deng X, Chen X, Chang Z, Lu Q, Tang A, et al. Circular RNA KIF4A promotes liver metastasis of breast cancer by reprogramming glucose metabolism. J Oncol. 2022;2022:8035083. https://doi.org/10.1155/2022/8035083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Fu J, Chen Y, Li Y, Ning L, Huang D, et al. Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer. Aging (Albany NY). 2021;13(12):16500–12. https://doi.org/10.18632/aging.203172.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Z, Wang F, Xiong Y, Wang N, Gu Y, Qiu X. CircZFR functions as a sponge of miR-578 to promote breast cancer progression by regulating HIF1A expression. Cancer Cell Int. 2020;20:400. https://doi.org/10.1186/s12935-020-01492-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong H, Yu H, Jia G, Yu J, Su Y, Zhang J, et al. circZFR regulates thyroid cancer progression by the miR-16/MAPK1 axis. Environ Toxicol. 2021;36(11):2236–44. https://doi.org/10.1002/tox.23337.

    Article  CAS  PubMed  Google Scholar 

  32. Wei H, Pan L, Tao D, Li R. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem Biophys Res Commun. 2018;503(1):56–61. https://doi.org/10.1016/j.bbrc.2018.05.174.

    Article  CAS  PubMed  Google Scholar 

  33. Zan X, Li W, Wang G, Yuan J, Ai Y, Huang J, et al. Circ-CSNK1G1 promotes cell proliferation, migration, invasion and glycolysis metabolism during triple-negative breast cancer progression by modulating the miR-28–5p/LDHA pathway. Reprod Biol Endocrinol. 2022;20(1):138. https://doi.org/10.1186/s12958-022-00998-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Li Q, Yi R, Li B, Xiong D, Peng H. CircRNA casein kinase 1 gamma 1 (circ-CSNK1G1) plays carcinogenic effects in thyroid cancer by acting as miR-149–5p sponge and relieving the suppression of miR-149–5p on mitogen-activated protein kinase 1 (MAPK1). J Clin Lab Anal. 2022;36(2):e24188. https://doi.org/10.1002/jcla.24188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao Y, Li X, Cheng L, Wu X, Wu B. Circular RNA FAT atypical cadherin 1 (circFAT1)/microRNA-525-5p/spindle and kinetochore-associated complex subunit 1 (SKA1) axis regulates oxaliplatin resistance in breast cancer by activating the notch and Wnt signaling pathway. Bioengineered. 2021;12(1):4032–43. https://doi.org/10.1080/21655979.2021.1951929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Li H, Wei C, Ding J, Lu J, Pan G, et al. circFAT1(e2) promotes papillary thyroid cancer proliferation, migration, and invasion via the miRNA-873/ZEB1 axis. Comput Math Methods Med. 2020;2020:1459368. https://doi.org/10.1155/2020/1459368.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang S, Li Q, Wang Y, Li X, Wang R, Kang Y, et al. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway. Biochem Biophys Res Commun. 2018;505(4):996–1002. https://doi.org/10.1016/j.bbrc.2018.10.026.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Yang X, Zhou F, Sun X, Li S. Circular RNA UBAP2 facilitates the cisplatin resistance of triple-negative breast cancer via microRNA-300/anti-silencing function 1B histone chaperone/PI3K/AKT/mTOR axis. Bioengineered. 2022;13(3):7197–208. https://doi.org/10.1080/21655979.2022.2036894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiong H, Yu J, Jia G, Su Y, Zhang J, Xu Q, et al. Emerging roles of circUBAP2 targeting miR-370-3p in proliferation, apoptosis, and invasion of papillary thyroid cancer cells. Hum Cell. 2021;34(6):1866–77. https://doi.org/10.1007/s13577-021-00585-1.

    Article  CAS  PubMed  Google Scholar 

  40. Zou Y, Zheng S, Xiao W, Xie X, Yang A, Gao G, et al. circRAD18 sponges miR-208a/3164 to promote triple-negative breast cancer progression through regulating IGF1 and FGF2 expression. Carcinogenesis. 2019;40(12):1469–79. https://doi.org/10.1093/carcin/bgz071.

    Article  CAS  PubMed  Google Scholar 

  41. Chen W, Zhang T, Bai Y, Deng H, Yang F, Zhu R, et al. Upregulated circRAD18 promotes tumor progression by reprogramming glucose metabolism in papillary thyroid cancer. Gland Surg. 2021;10(8):2500–10. https://doi.org/10.21037/gs-21-481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu D, Jia H, Zhang Z, Li S. Circ-PRMT5 promotes breast cancer by the miR-509-3p/TCF7L2 axis activating the PI3K/AKT pathway. J Gene Med. 2021;23(2):e3300. https://doi.org/10.1002/jgm.3300.

    Article  CAS  PubMed  Google Scholar 

  43. Xue C, Cheng Y, Wu J, Ke K, Miao C, Chen E, et al. Circular RNA CircPRMT5 accelerates proliferation and invasion of papillary thyroid cancer through regulation of miR-30c/E2F3 axis. Cancer Manag Res. 2020;12:3285–91. https://doi.org/10.2147/CMAR.S249237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Huang K, Shi L, Zhang Q, Zhang S. CircPVT1 promoted the progression of breast cancer by regulating MiR-29a-3p-mediated AGR2-HIF-1α pathway. Cancer Manag Res. 2020;12:11477–90. https://doi.org/10.2147/CMAR.S265579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bian Q, Circular RNA. PVT1 promotes the invasion and epithelial-mesenchymal transition of breast cancer cells through serving as a competing endogenous RNA for miR-204–5p. Onco Targets Ther. 2019;12:11817–26. https://doi.org/10.2147/OTT.S180850.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Conte F, Fiscon G, Chiara M, Colombo T, Farina L, Paci P. Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS ONE. 2017;12(2):e0171661. https://doi.org/10.1371/journal.pone.0171661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeng L, Yuan S, Zhou P, Gong J, Kong X, Wu M. Circular RNA Pvt1 oncogene (CircPVT1) promotes the progression of papillary thyroid carcinoma by activating the Wnt/β-catenin signaling pathway and modulating the ratio of microRNA-195 (miR-195) to vascular endothelial growth factor A (VEGFA) expression. Bioengineered. 2021;12(2):11795–810. https://doi.org/10.1080/21655979.2021.2008639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tao L, Yang L, Tian P, Guo X, Chen Y. Knockdown of circPVT1 inhibits progression of papillary thyroid carcinoma by sponging miR-126. RSC Adv. 2019;9(23):13316–24. https://doi.org/10.1039/c9ra01820d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hua T, Luo Y. Circular RNA PVT1 promotes progression of thyroid cancer by competitively binding miR-384. Exp Ther Med. 2022;24(4):629. https://doi.org/10.3892/etm.2022.11566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng X, Rui S, Wang XF, Zou XH, Gong YP, Li ZH. circPVT1 regulates medullary thyroid cancer growth and metastasis by targeting miR-455–5p to activate CXCL12/CXCR4 signaling. J Exp Clin Cancer Res. 2021;40(1):157. https://doi.org/10.1186/s13046-021-01964-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang L, Song C, Chen Y, Jing G, Sun J. Circular RNA circ_0103552 forecasts dismal prognosis and promotes breast cancer cell proliferation and invasion by sponging miR-1236. J Cell Biochem. 2019;120(9):15553–60. https://doi.org/10.1002/jcb.28822.

    Article  CAS  PubMed  Google Scholar 

  52. Huang Q, He Y, Zhang X, Guo L. Circular RNA hsa_circ_0103552 promotes proliferation, migration, and invasion of breast cancer cells through upregulating cysteine-rich angiogenic inducer 61 (CYR61) expression via sponging microRNA-515-5p. Tohoku J Exp Med. 2021;255(2):171–81. https://doi.org/10.1620/tjem.255.171.

    Article  CAS  PubMed  Google Scholar 

  53. Zheng FB, Chen D, Ding YY, Wang SR, Shi DD, Zhu ZP. Circular RNA circ_0103552 promotes the invasion and migration of thyroid carcinoma cells by sponging miR-127. Eur Rev Med Pharmacol Sci. 2020;24(5):2572–8. https://doi.org/10.26355/eurrev_202003_20526.

    Article  PubMed  Google Scholar 

  54. Wang X, Ji C, Hu J, Deng X, Zheng W, Yu Y, et al. Hsa_circ_0005273 facilitates breast cancer tumorigenesis by regulating YAP1-hippo signaling pathway. J Exp Clin Cancer Res. 2021;40(1):29. https://doi.org/10.1186/s13046-021-01830-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang W, Zhang H, Zhao X. circ_0005273 promotes thyroid carcinoma progression by SOX2 expression. Endocr Relat Cancer. 2020;27(1):11–21. https://doi.org/10.1530/ERC-19-0381.

    Article  PubMed  Google Scholar 

  56. Rao AKDM, Arvinden VR, Ramasamy D, Patel K, Meenakumari B, Ramanathan P, et al. Identification of novel dysregulated circular RNAs in early-stage breast cancer. J Cell Mol Med. 2021;25(8):3912–21. https://doi.org/10.1111/jcmm.16324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Q, Wu L, Liu SZ, Chen Q, Zeng LP, Chen XZ, et al. Hsa_circ_0023990 promotes tumor growth and glycolysis in dedifferentiated TC via targeting miR-485-5p/FOXM1 axis. Endocrinology. 2021;162(12):bqab172. https://doi.org/10.1210/endocr/bqab172

  58. Li HG, Zhao LH, Lu A, Liu JB, Su ZJ, Wang XB, Gao YJ. The mechanism of circ_0023990/miR-873-5p/ANXA2 axis regulating radiosensitivity and development of thyroid carcinoma. Zhonghua Yi Xue Za Zhi. 2021;101(40):3329–37. https://doi.org/10.3760/cma.j.cn112137-20210207-00379.

    Article  CAS  PubMed  Google Scholar 

  59. Wang ST, Liu LB, Li XM, Wang YF, Xie PJ, Li Q, et al. Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/β-catenin pathway. Neoplasma. 2019;66(2):232–9. https://doi.org/10.4149/neo_2018_180710N460.

    Article  CAS  PubMed  Google Scholar 

  60. Wang M, Chen B, Ru Z, Cong L. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun. 2018;504(1):283–8. https://doi.org/10.1016/j.bbrc.2018.08.175.

    Article  CAS  PubMed  Google Scholar 

  61. Yu XP, Liu CG, Qiu F, Xu YQ, Xing F, Yin JQ, et al. CircRNA_100395 protects breast carcinoma deterioration by targeting MAPK6. Eur Rev Med Pharmacol Sci. 2020;24(23):12216–23. https://doi.org/10.26355/eurrev_202012_24012.

    Article  PubMed  Google Scholar 

  62. Su N, Liu L, He S, Zeng L. Circ_0001666 affects miR-620/WNK2 axis to inhibit breast cancer progression. Genes Genomics. 2021;43(8):947–59. https://doi.org/10.1007/s13258-021-01114-y.

    Article  CAS  PubMed  Google Scholar 

  63. Qi Y, He J, Zhang Y, Wang L, Yu Y, Yao B, et al. Circular RNA hsa_circ_0001666 sponges miR-330-5p, miR-193a-5p and miR-326, and promotes papillary thyroid carcinoma progression via upregulation of ETV4. Oncol Rep. 2021;45(4):50. https://doi.org/10.3892/or.2021.8001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kurosaki M, Terao M, Liu D, Zanetti A, Guarrera L, Bolis M, et al. A DOCK1 gene-derived circular RNA is highly expressed in luminal mammary tumours and is involved in the epithelial differentiation, growth, and motility of breast cancer cells. Cancers (Basel). 2021;13(21):5325. https://doi.org/10.3390/cancers13215325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cui W, Xue J. Circular RNA DOCK1 downregulates microRNA-124 to induce the growth of human thyroid cancer cell lines. BioFactors. 2020;46(4):591–9. https://doi.org/10.1002/biof.1662.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

There is no financial support for this work. We are particularly grateful for the contribution of our Thyroid Breast Surgery colleagues at The Affiliated Hospital of Inner Mongolia Medical University.

Author information

Authors and Affiliations

Authors

Contributions

R.G. collected materials, wrote, and revised this manuscript; R.Z. conceived and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rina Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Institutional review board statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Zhang, R. Dual effects of circRNA in thyroid and breast cancer. Clin Transl Oncol 25, 3321–3331 (2023). https://doi.org/10.1007/s12094-023-03173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03173-x

Keywords

Navigation