Skip to main content

Advertisement

Log in

LncRNA CASC19: a novel oncogene involved in human cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Multiple studies have shown that long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of diverse cancers. Cancer susceptibility candidate 19 (CASC19), encoded by chromosome 8q24.21, is a newly discovered lncRNA that contains 324 nucleotides. CASC19 has been found to be significantly overexpressed in different human cancers, such as non-small cell lung carcinoma, gastric cancer, colorectal cancer, pancreatic cancer, clear cell renal cell carcinoma, glioma, cervical cancer, and nasopharyngeal carcinoma. Moreover, dysregulation of CASC19 was closely associated with clinicopathological parameters and cancer progression. CASC19 regulates a variety of cell phenotypes, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial–mesenchymal transition, autophagy, and therapeutic resistance. In this study, we review recent studies on the characteristics and biological function of CASC19, as well as its role in human cancers. These findings suggest that CASC19 may be both a reliable biomarker and a potential therapeutic target in cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021;127(16):3029–30. https://doi.org/10.1002/cncr.33587.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  3. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8. https://doi.org/10.1038/nature11233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. https://doi.org/10.1038/nature11247.

    Article  CAS  Google Scholar 

  5. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41. https://doi.org/10.1016/j.cell.2009.02.006.

    Article  CAS  PubMed  Google Scholar 

  6. Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, et al. Long non-coding RNAs in gastric cancer: new emerging biological functions and therapeutic implications. Theranostics. 2020;10(19):8880–902. https://doi.org/10.7150/thno.47548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9. https://doi.org/10.1038/nrg2521.

    Article  CAS  PubMed  Google Scholar 

  8. Carlevaro-Fita J, Johnson R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell. 2019;73(5):869–83. https://doi.org/10.1016/j.molcel.2019.02.008.

    Article  CAS  PubMed  Google Scholar 

  9. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. https://doi.org/10.1146/annurev-biochem-051410-092902.

    Article  CAS  PubMed  Google Scholar 

  10. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760–74. https://doi.org/10.1101/gr.135350.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542–51. https://doi.org/10.1038/s41556-019-0311-8.

    Article  CAS  PubMed  Google Scholar 

  12. Wang R, Ma Z, Feng L, Yang Y, Tan C, Shi Q, et al. LncRNA MIR31HG targets HIF1A and P21 to facilitate head and neck cancer cell proliferation and tumorigenesis by promoting cell-cycle progression. Mol Cancer. 2018;17(1):162. https://doi.org/10.1186/s12943-018-0916-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Qin X, Bian W, Li Y, Shan B, Yao Z, et al. Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Cancer Res. 2019;38(1):477. https://doi.org/10.1186/s13046-019-1473-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang M, Wang N, Song P, Fu Y, Ren Y, Li Z, et al. LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif. 2020;53(9):e12855. https://doi.org/10.1111/cpr.12855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liao M, Liao W, Xu N, Li B, Liu F, Zhang S, et al. LncRNA EPB41L4A-AS1 regulates glycolysis and glutaminolysis by mediating nucleolar translocation of HDAC2. EBioMedicine. 2019;41:200–13. https://doi.org/10.1016/j.ebiom.2019.01.035.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu C-Y, Zhang Y-H, Li R-B, Zhou L-Y, An T, Zhang R-C, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 2018;9(1):29. https://doi.org/10.1038/s41467-017-02280-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behera J, Kumar A, Voor MJ, Tyagi N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics. 2021;11(16):7715–34. https://doi.org/10.7150/thno.58410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sang L-J, Ju H-Q, Liu G-P, Tian T, Ma G-L, Lu Y-X, et al. LncRNA CamK-A regulates Ca-signaling-mediated tumor microenvironment remodeling. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.08.014.

    Article  PubMed  Google Scholar 

  19. Li Z, Meng X, Wu P, Zha C, Han B, Li L, et al. Glioblastoma cell-derived lncRNA-containing exosomes induce microglia to produce complement C5 promoting chemotherapy resistance. Cancer Immunol Res. 2021;9(12):1383–99. https://doi.org/10.1158/2326-6066.CIR-21-0258.

    Article  CAS  PubMed  Google Scholar 

  20. Ozawa T, Matsuyama T, Toiyama Y, Takahashi N, Ishikawa T, Uetake H, et al. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 “gene desert”, serve as important prognostic biomarkers in colorectal cancer. Ann Oncol. 2017;28(8):1882–8. https://doi.org/10.1093/annonc/mdx248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Teerlink CC, Leongamornlert D, Dadaev T, Thomas A, Farnham J, Stephenson RA, et al. Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21. Hum Genet. 2016;135(8):923–38. https://doi.org/10.1007/s00439-016-1690-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanskanen T, van den Berg L, Välimäki N, Aavikko M, Ness-Jensen E, Hveem K, et al. Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci. Int J Cancer. 2018;142(3):540–6. https://doi.org/10.1002/ijc.31076.

    Article  CAS  PubMed  Google Scholar 

  23. Silvestri V, Rizzolo P, Scarnò M, Chillemi G, Navazio AS, Valentini V, et al. Novel and known genetic variants for male breast cancer risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: results from a multicenter study in Italy. Eur J Cancer (Oxf, Engl). 2015;51(16):2289–95. https://doi.org/10.1016/j.ejca.2015.07.020.

    Article  CAS  Google Scholar 

  24. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54. https://doi.org/10.1038/nature25183.

    Article  CAS  PubMed  Google Scholar 

  25. Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA. 2019;322(8):764–74. https://doi.org/10.1001/jama.2019.11058.

    Article  CAS  PubMed  Google Scholar 

  26. Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2018. Bethesda: National Cancer Institute; 2021.

    Google Scholar 

  27. Qu CX, Shi XC, Zai LQ, Bi H, Yang Q. LncRNA CASC19 promotes the proliferation, migration and invasion of non-small cell lung carcinoma via regulating miRNA-130b-3p. Eur Rev Med Pharmacol Sci. 2019;23(3 Suppl):247–55. https://doi.org/10.26355/eurrev_201908_18654.

    Article  PubMed  Google Scholar 

  28. Wang L, Lin C, Sun N, Wang Q, Ding X, Sun Y. Long non-coding RNA CASC19 facilitates non-small cell lung cancer cell proliferation and metastasis by targeting the miR-301b-3p/LDLR axis. J Gene Med. 2020;22(12):e3254. https://doi.org/10.1002/jgm.3254.

    Article  CAS  PubMed  Google Scholar 

  29. Wei L, Jiang J. Targeting the miR-6734-3p/ZEB2 axis hampers development of non-small cell lung cancer (NSCLC) and increases susceptibility of cancer cells to cisplatin treatment. Bioengineered. 2021;12(1):2499–510. https://doi.org/10.1080/21655979.2021.1936891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li C, Wan L, Liu Z, Xu G, Wang S, Su Z, et al. Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett. 2018;418:185–95. https://doi.org/10.1016/j.canlet.2018.01.036.

    Article  CAS  PubMed  Google Scholar 

  31. Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–74. https://doi.org/10.1093/cvr/cvz338.

    Article  CAS  PubMed  Google Scholar 

  32. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635–48. https://doi.org/10.1016/S0140-6736(20)31288-5.

    Article  CAS  PubMed  Google Scholar 

  33. Wang WJ, Guo CA, Li R, Xu ZP, Yu JP, Ye Y, et al. Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging (Albany NY). 2019;11(15):5829–47. https://doi.org/10.18632/aging.102190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21031102.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022;91:571–98. https://doi.org/10.1146/annurev-biochem-040320-103615.

    Article  CAS  PubMed  Google Scholar 

  36. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80. https://doi.org/10.1016/s0140-6736(19)32319-0.

    Article  PubMed  Google Scholar 

  37. Wang JJ, Li XM, He L, Zhong SZ, Peng YX, Ji N. Expression and function of long non-coding RNA CASC19 in colorectal cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2017;39(6):756–61. https://doi.org/10.3881/j.issn.1000-503X.2017.06.004.

    Article  PubMed  Google Scholar 

  38. Wang X-D, Lu J, Lin Y-S, Gao C, Qi F. Functional role of long non-coding RNA CASC19/miR-140-5p/CEMIP axis in colorectal cancer progression. World J Gastroenterol. 2019;25(14):1697–714. https://doi.org/10.3748/wjg.v25.i14.1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84. https://doi.org/10.1038/s41580-018-0080-4.

    Article  CAS  PubMed  Google Scholar 

  40. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309. https://doi.org/10.1038/s41586-019-1730-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24(34):3834–48. https://doi.org/10.3748/wjg.v24.i34.3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zinovieva OL, Grineva EN, Prokofjeva MM, Karpov DS, Zheltukhin AO, Krasnov GS, et al. Expression of long non-coding RNA LINC00973 is consistently increased upon treatment of colon cancer cells with different chemotherapeutic drugs. Biochimie. 2018;151:67–72. https://doi.org/10.1016/j.biochi.2018.05.021.

    Article  CAS  PubMed  Google Scholar 

  43. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008–20. https://doi.org/10.1016/s0140-6736(20)30974-0.

    Article  CAS  PubMed  Google Scholar 

  44. Lu T, Wei GH, Wang J, Shen J. LncRNA CASC19 contributed to the progression of pancreatic cancer through modulating miR-148b/E2F7 axis. Eur Rev Med Pharmacol Sci. 2020;24(20):10462–71. https://doi.org/10.26355/eurrev_202010_23399.

    Article  CAS  PubMed  Google Scholar 

  45. Huang B, Liu J, Lu J, Gao W, Zhou L, Tian F, et al. Aerial view of the association between m6A-related LncRNAs and clinicopathological characteristics of pancreatic cancer. Front Oncol. 2021;11:812785. https://doi.org/10.3389/fonc.2021.812785.

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009. https://doi.org/10.1038/nrdp.2017.9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24. https://doi.org/10.1016/j.eururo.2015.01.005.

    Article  PubMed  Google Scholar 

  48. National Cancer Institute. Cancer stat facts: kidney and renal pelvis cancer, https://seer.cancer.gov/statfacts/html/kidrp.html; accessed 14Nov 2022

  49. Luo Y, Liu F, Yan C, Qu W, Zhu L, Guo Z, et al. Long non-coding RNA CASC19 sponges microRNA-532 and promotes oncogenicity of clear cell renal cell carcinoma by increasing ETS1 expression. Cancer Manag Res. 2020;12:2195–207. https://doi.org/10.2147/CMAR.S242472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer. 2018;17(1):61. https://doi.org/10.1186/s12943-018-0812-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. https://doi.org/10.1038/s41571-018-0003-5.

    Article  CAS  PubMed  Google Scholar 

  52. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–86. https://doi.org/10.1038/s41571-020-00447-z.

    Article  PubMed  Google Scholar 

  53. Wu Y-J, Yang Q-S, Chen H, Wang J-T, Wang W-B, Zhou L. Long non-coding RNA CASC19 promotes glioma progression by modulating the miR-454-3p/RAB5A axis and is associated with unfavorable MRI features. Oncol Rep. 2021;45(2):728–37. https://doi.org/10.3892/or.2020.7876.

    Article  CAS  PubMed  Google Scholar 

  54. Li G, Li L, Li Y, Qian Z, Wu F, He Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain. 2022;145(3):1151–61. https://doi.org/10.1093/brain/awab340.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rodin D, Burger EA, Atun R, Barton M, Gospodarowicz M, Grover S, et al. Scale-up of radiotherapy for cervical cancer in the era of human papillomavirus vaccination in low-income and middle-income countries: a model-based analysis of need and economic impact. Lancet Oncol. 2019;20(7):915–23. https://doi.org/10.1016/s1470-2045(19)30308-0.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cheng L, Shi X, Huo D, Zhao Y, Zhang H. MiR-449b-5p regulates cell proliferation, migration and radioresistance in cervical cancer by interacting with the transcription suppressor FOXP1. Eur J Pharmacol. 2019;856:172399. https://doi.org/10.1016/j.ejphar.2019.05.028.

    Article  CAS  PubMed  Google Scholar 

  57. Liu YJ, Guo RX, Han LP, Gu H, Liu MZ. Effect of CASC19 on proliferation, apoptosis and radiation sensitivity of cervical cancer cells by regulating miR-449b-5p expression. Zhonghua Fu Chan Ke Za Zhi. 2020;55(1):36–44. https://doi.org/10.3760/cma.j.issn.0529-567X.2020.01.007.

    Article  CAS  PubMed  Google Scholar 

  58. Chen Y-P, Chan ATC, Le Q-T, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64–80. https://doi.org/10.1016/s0140-6736(19)30956-0.

    Article  PubMed  Google Scholar 

  59. Liu H, Zheng W, Chen Q, Zhou Y, Pan Y, Zhang J, et al. lncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22031407.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 2013. https://doi.org/10.1053/j.gastro.2013.07.048.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41. https://doi.org/10.1038/ncb2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reis EM, Verjovski-Almeida S. Perspectives of long non-coding RNAs in cancer diagnostics. Front Genet. 2012;3:32. https://doi.org/10.3389/fgene.2012.00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer. 2018;17(1):82. https://doi.org/10.1186/s12943-018-0831-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tong Y-S, Wang X-W, Zhou X-L, Liu Z-H, Yang T-X, Shi W-H, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol Cancer. 2015;14:3. https://doi.org/10.1186/1476-4598-14-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, et al. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer. 2018;17(1):68. https://doi.org/10.1186/s12943-018-0817-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 2022;7(1):121. https://doi.org/10.1038/s41392-022-00975-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mercer TR, Munro T, Mattick JS. The potential of long noncoding RNA therapies. Trends Pharmacol Sci. 2022;43(4):269–80. https://doi.org/10.1016/j.tips.2022.01.008.

    Article  CAS  PubMed  Google Scholar 

  68. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21(4):498–510. https://doi.org/10.1038/s41556-019-0299-0.

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y, Lu J-H, Wu Q-N, Jin Y, Wang D-S, Chen Y-X, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 2019;18(1):174. https://doi.org/10.1186/s12943-019-1105-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Can Res. 2018;78(13):3484–96. https://doi.org/10.1158/0008-5472.CAN-17-3454.

    Article  CAS  Google Scholar 

  71. Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37(30):4094–109. https://doi.org/10.1038/s41388-018-0250-z.

    Article  CAS  PubMed  Google Scholar 

  72. Park E-G, Pyo S-J, Cui Y, Yoon S-H, Nam J-W. Tumor immune microenvironment lncRNAs. Brief Bioinform. 2022. https://doi.org/10.1093/bib/bbab504.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xu Q, Wang Y, Huang W. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int Immunopharmacol. 2021;92:107333. https://doi.org/10.1016/j.intimp.2020.107333.

    Article  CAS  PubMed  Google Scholar 

  74. Li F, He C, Yao H, Liang W, Ye X, Ruan J, et al. GLUT1 Regulates the tumor immune microenvironment and promotes tumor metastasis in pancreatic adenocarcinoma via ncRNA-mediated network. J Cancer. 2022;13(8):2540–58. https://doi.org/10.7150/jca.72161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen K, Wang Q, Liu X, Wang F, Ma Y, Zhang S, et al. Single cell RNA-seq identifies immune-related prognostic model and key signature-SPP1 in pancreatic ductal adenocarcinoma. Genes (Basel). 2022. https://doi.org/10.3390/genes13101760.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang J, Li Z, Liu L, Wang Q, Li S, Chen D, et al. Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology. 2018;67(1):171–87. https://doi.org/10.1002/hep.29405.

    Article  CAS  PubMed  Google Scholar 

  77. Xie JJ, Jiang YY, Jiang Y, Li CQ, Lim MC, An O, et al. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma. Gastroenterology. 2018;154(8):2137-51.e1. https://doi.org/10.1053/j.gastro.2018.02.018.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang E, Han L, Yin D, He X, Hong L, Si X, et al. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res. 2017;45(6):3086–101. https://doi.org/10.1093/nar/gkw1247.

    Article  CAS  PubMed  Google Scholar 

  79. Hadji F, Boulanger M-C, Guay S-P, Gaudreault N, Amellah S, Mkannez G, et al. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1. Circulation. 2016;134(23):1848–62.

    Article  CAS  PubMed  Google Scholar 

  80. Hammerle M, Gutschner T, Uckelmann H, Ozgur S, Fiskin E, Gross M, et al. Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology. 2013;58(5):1703–12. https://doi.org/10.1002/hep.26537.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82070575), Natural Science Foundation of Beijing Municipality (J180010), Beijing Municipal Administration of Hospitals (XXZ0205), and Capital Health Development Research Fund (No. 2020-1-2023).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SW, SL and PL. Writing-original draft: SW, RF, CQ, SY and GZ. Writing—review and editing: SL and PL.

Corresponding authors

Correspondence to Si Liu or Peng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Qiao, C., Fang, R. et al. LncRNA CASC19: a novel oncogene involved in human cancer. Clin Transl Oncol 25, 2841–2851 (2023). https://doi.org/10.1007/s12094-023-03165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03165-x

Keywords

Navigation