Skip to main content

Advertisement

Log in

Comprehensive analysis of novel cancer prediction genes and tumor microenvironment infiltration in colon cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Colon cancer with high incidence and mortality is a severe public health problem. As an emerging therapy, immunotherapy has played an active clinical role in tumor treatment, but only a small number of patients respond.

Methods

By univariate Cox regression analysis of 165 novel cancer prediction genes (NCPGs), 29 NCPGs related to prognosis were screened. Based on these 29 NCPGs and 336 differentially expressed genes, we constructed two colon cancer subgroups and three gene clusters and analyzed prognosis, activation pathways, and immune infiltration characteristics under various modification patterns. Then each patient was scored and divided into high or low NCPG_score groups. A comprehensive evaluation between NCPG_score and clinical characteristics, tumor microenvironment (TME), tumor somatic mutations, and the potential for immunotherapy was conducted.

Results

Patients with high NCPG_score were characterized by high tumor mutation burden and high microsatellite instability and were more suitable for immunotherapy.

Conclusions

This study screened 29 NCPGs as independent prognostic markers in colon cancer patients, demonstrating their TME, clinicopathological features, and potential roles in immunotherapy, helping to assess prognosis and guiding more personalized immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data sets analyzed during the current study are available in the TCGA (https://portal.gdc.cancer.gov/), accession numbers TCGA-COAD, COAD-FPKM; GEO repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582).

Abbreviations

CNV:

Copy number variation

DEGs:

Differentially expressed genes

FDA:

Food and Drug Administration

ICB:

Immune-checkpoint blocker

MSI:

Microsatellite instability

MSI-H:

High microsatellite instability

MDSCs:

Myeloid-derived suppressor cells

NCPGs:

Novel cancer prediction genes

PCA:

Principal component analysis

ssGSEA:

Single sample gene set enrichment analysis

TCGA:

The cancer genome Atlas

TGF-beta:

Transforming growth factor beta

TMB:

Tumor mutation burden

TME:

Tumor microenvironment

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.

    Article  PubMed  Google Scholar 

  3. Murphy N, Ward HA, Jenab M, Rothwell JA, Boutron-Ruault MC, Carbonnel F, et al. Heterogeneity of colorectal cancer risk factors by anatomical subsite in 10 European countries: a multinational cohort study. Clin Gastroenterol Hepatol. 2019;17(1323–31): e6.

    Google Scholar 

  4. Wong MCS, Huang J, Lok V, Wang J, Fung F, Ding H, et al. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clin Gastroenterol Hepatol. 2021;19(955–66): e61.

    Google Scholar 

  5. Kim EK, Song MJ, Jung Y, Lee WS, Jang HH. Proteomic analysis of primary colon cancer and synchronous solitary liver metastasis. Cancer Genomics Proteomics. 2019;16:583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  CAS  PubMed  Google Scholar 

  7. Lee AY, Brady MS. Neoadjuvant immunotherapy for melanoma. J Surg Oncol. 2021;123:782–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.

    Article  CAS  PubMed  Google Scholar 

  9. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM, Dostmann N, et al. T25 repeat in the 3’ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 2005;65:8072–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lichtenstern CR, Ngu RK, Shalapour S, Karin M. Immunotherapy, inflammation and colorectal cancer. Cells. 2020;9:618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B, et al. Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer. 2019;121:809–18.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu Y, Xu J, Du C, Wu Y, Xia D, Lv W, et al. The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic review and meta-analysis. Front Oncol. 2019;9:1161.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019;30:1096–103.

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Duanmu J, Fu X, Li T, Jiang Q. Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment. J Transl Med. 2020;18:1–14.

    Article  Google Scholar 

  16. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018;9:5361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35.

    Article  CAS  PubMed  Google Scholar 

  19. Singh MP, Rai S, Suyal S, Singh SK, Singh NK, Agarwal A, et al. Genetic and epigenetic markers in colorectal cancer screening: recent advances. Expert Rev Mol Diagn. 2017;17:665–85.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou R, Zhang J, Zeng D, Sun H, Rong X, Shi M, et al. Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I-III colon cancer. Cancer Immunol Immunother. 2019;68:433–42.

    Article  CAS  PubMed  Google Scholar 

  21. Ju HQ, Zhao Q, Wang F, Lan P, Wang Z, Zuo ZX, et al. A circRNA signature predicts postoperative recurrence in stage II/III colon cancer. EMBO Mol Med. 2019;11: e10168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu Z, Lu Z, Li L, Ma M, Long F, Wu R, et al. Identification and validation of ferroptosis-related LncRNA signatures as a novel prognostic model for colon cancer. Front Immunol. 2021;12: 783362.

    Article  CAS  PubMed  Google Scholar 

  23. Pan JH, Zhou H, Cooper L, Huang JL, Zhu SB, Zhao XX, et al. LAYN is a prognostic biomarker and correlated with immune infiltrates in gastric and colon cancers. Front Immunol. 2019;10:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li X, Wen D, Li X, Yao C, Chong W, Chen H. Identification of an immune signature predicting prognosis risk and lymphocyte infiltration in colon cancer. Front Immunol. 2020;11:1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo D, Liu Q, Shan Z, Cai S, Li Q, Li X. Development and validation of a novel epigenetic signature for predicting prognosis in colon cancer. J Cell Physiol. 2020;235:8714–23.

    Article  CAS  PubMed  Google Scholar 

  26. Dai W, Li Y, Mo S, Feng Y, Zhang L, Xu Y, et al. A robust gene signature for the prediction of early relapse in stage I-III colon cancer. Mol Oncol. 2018;12:463–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schulte-Sasse R, Budach S, Hnisz D, Marsico A. Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. Nat Mach Intell. 2021;3:513–26.

    Article  Google Scholar 

  28. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49.

    Article  CAS  PubMed  Google Scholar 

  29. Shida D, Kanemitsu Y, Hamaguchi T, Shimada Y. Introducing the eighth edition of the tumor-node-metastasis classification as relevant to colorectal cancer, anal cancer and appendiceal cancer: a comparison study with the seventh edition of the tumor-node-metastasis and the Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma. Jpn J Clin Oncol. 2019;49:321–8.

    Article  PubMed  Google Scholar 

  30. Chin CC, Wang JY, Changchien CR, Huang WS, Tang R. Carcinoma obstruction of the proximal colon cancer and long-term prognosis–obstruction is a predictor of worse outcome in TNM stage II tumor. Int J Colorectal Dis. 2010;25:817–22.

    Article  PubMed  Google Scholar 

  31. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138:2059–72.

    Article  CAS  PubMed  Google Scholar 

  32. Fan G, Lou L, Song Z, Zhang X, Xiong XF. Targeting mutated GTPase KRAS in tumor therapies. Eur J Med Chem. 2021;226: 113816.

    Article  CAS  PubMed  Google Scholar 

  33. McCuaig S, Barras D, Mann EH, Friedrich M, Bullers SJ, Janney A, et al. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer. Clin Cancer Res. 2020;26:4313–25.

    Article  CAS  PubMed  Google Scholar 

  34. Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, et al. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci. 2012;13:12153–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM, et al. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol. 2009;27:5931–7.

    Article  CAS  PubMed  Google Scholar 

  36. Li Z, Jia Y, Zhu H, Xing X, Pang F, Shan F, et al. Tumor mutation burden is correlated with response and prognosis in microsatellite-stable (MSS) gastric cancer patients undergoing neoadjuvant chemotherapy. Gastric Cancer. 2021;24:1342–54.

    Article  CAS  PubMed  Google Scholar 

  37. Toh JWT, Mahajan H, Chapuis P, Spring K. Current status on microsatellite instability, prognosis and adjuvant therapy in colon cancer: a nationwide survey of medical oncologists, colorectal surgeons and gastrointestinal pathologists. Cancer Rep (Hoboken). 2021;4: e1297.

    PubMed  Google Scholar 

  38. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stevens D, Ingels J, Van Lint S, Vandekerckhove B, Vermaelen K. Dendritic cell-based immunotherapy in lung cancer. Front Immunol. 2020;11: 620374.

    Article  CAS  PubMed  Google Scholar 

  40. Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E, et al. Immunotherapy for pancreatic cancer: a 2020 update. Cancer Treat Rev. 2020;86: 102016.

    Article  CAS  PubMed  Google Scholar 

  41. Henegan JC, Sonpavde G. Promising immunotherapy for prostate cancer. Expert Opin Biol Ther. 2018;18:109–20.

    Article  CAS  PubMed  Google Scholar 

  42. Hammers H. Immunotherapy in kidney cancer: the past, present, and future. Curr Opin Urol. 2016;26:543–7.

    Article  PubMed  Google Scholar 

  43. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  44. Basile D, Garattini SK, Bonotto M, Ongaro E, Casagrande M, Cattaneo M, et al. Immunotherapy for colorectal cancer: where are we heading? Expert Opin Biol Ther. 2017;17:709–21.

    Article  PubMed  Google Scholar 

  45. Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol. 2020;17:1–12.

    Article  CAS  PubMed  Google Scholar 

  46. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16–25.

    Article  CAS  PubMed  Google Scholar 

  47. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, et al. Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70:99–108.

    Article  CAS  PubMed  Google Scholar 

  48. Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: a potential for cancer immunotherapy. Pharmacol Res. 2019;147: 104353.

    Article  CAS  PubMed  Google Scholar 

  49. Derynck R, Turley SJ, Akhurst RJ. TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18:9–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge TCGA and GEO databases providing their platforms for offering convenient access to datasets and the contributors for uploading their meaningful datasets.

Funding

This study was funded by the National Science Foundation of China (No. 81903539).

Author information

Authors and Affiliations

Authors

Contributions

SZ was responsible for the concept and design of the original study and performed a systematic search in the literature of original articles. SW performed the data analysis and manuscript preparation, SZ was responsible for the critical review of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Sujie Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5257 KB)

Supplementary file2 (XLSX 216 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhu, S. Comprehensive analysis of novel cancer prediction genes and tumor microenvironment infiltration in colon cancer. Clin Transl Oncol 25, 2545–2558 (2023). https://doi.org/10.1007/s12094-023-03145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03145-1

Keywords

Navigation