Skip to main content

Advertisement

Log in

SLC14A1 is a new biomarker in renal cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Renal cancer is one of the common malignant tumors of the urinary tract, prone to distant metastasis and drug resistance, with a poor clinical prognosis. SLC14A1 belongs to the solute transporter family, which plays a role in urinary concentration and urea nitrogen recycling in the renal, and is closely associated with the development of a variety of tumors.

Methods

Transcription data for renal clear cell carcinoma (KIRC) were obtained from the public databases Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA), and we investigated the differences in SLC14A1 expression in cancerous and normal tissues of renal cancer, its correlation with the clinicopathological features of renal cancer patients. Then, we verified the expression levels of SLC14A1 in renal cancer tissues and their Paracancerous tissues using RT-PCR, Western-blotting and immunohistochemistry. Finally, we used renal endothelial cell line HEK-293 and renal cancer cell lines 786-O and ACHN to explore the effects of SLC14A1 on the biological behaviors of renal cancer cell proliferation, invasion and metastasis using EDU, MTT proliferation assay, Transwell invasion assay and scratch healing assay.

Results

SLC14A1 was lowly expressed in renal cancer tissues and this was further validated by RT-PCR, Western blotting, and immunohistochemistry in our clinical samples. Analysis of KIRC single-cell data suggested that SLC14A1 was mainly expressed in endothelial cells. Survival analysis showed that low levels of SLC14A1 expression were associated with a better clinical prognosis. In biological behavioral studies, we found that upregulation of SLC14A1 expression levels inhibited the proliferation, invasion, and metastatic ability of renal cancer cells.

Conclusion

SLC14A1 plays an important role in the progression of renal cancer and has the potential to become a new biomarker for renal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available in the public databases Gene Expression Omnibus database (GEO) (https://www.ncbi.nlm.nih.gov/geo/)and The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga/). Additional data can be requested from the corresponding author.

References

  1. Wang J, Ren Y, Guo X, Cheng H, Ye Y, Qi J, et al. Alterations in enhancer of zeste homolog 2, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression are associated with ex vivo and in vitro bone metastasis in renal cell carcinoma. Mol Med Rep. 2015;11(5):3585–92. https://doi.org/10.3892/mmr.2015.3164.

    Article  CAS  PubMed  Google Scholar 

  2. Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387(10021):894–906. https://doi.org/10.1016/S0140-6736(15)00046-X.

    Article  PubMed  Google Scholar 

  3. Kroeger N, Zimmermann U, Burchardt M. One decade of improving palliative care of metastatic renal cell carcinoma by antiangiogenic therapies: time to move toward RCC cure. Int J Cancer. 2015;136(7):1483–4. https://doi.org/10.1002/ijc.29189.

    Article  CAS  PubMed  Google Scholar 

  4. Tan X, Liu Y, Hou J, Cao G. Targeted therapies for renal cell carcinoma in Chinese patients: focus on everolimus. Onco Targets Ther. 2015;8:313–21. https://doi.org/10.2147/OTT.S64660.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang D, Ding Y, Luo WM, Bender S, Qian CN, Kort E, et al. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res. 2008;68(1):81–8. https://doi.org/10.1158/0008-5472.CAN-07-5311.

    Article  CAS  PubMed  Google Scholar 

  6. Dong B, Zhang J, Chen Y, Chen H, Chen Q, Guo S, et al. Data analysis of renal cancer database of Shanghai Renji Hospital. Chin J Urol. 2008;04:222–5.

    Google Scholar 

  7. Kabaria R, Klaassen Z, Terris MK. Renal cell carcinoma: links and risks. Int J Nephrol Renovasc Dis. 2016;9:45–52. https://doi.org/10.2147/IJNRD.S75916.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mellemgaard A, Niwa S, Mehl ES, Engholm G, McLaughlin JK, Olsen JH. Risk factors for renal cell carcinoma in Denmark: role of medication and medical history. Int J Epidemiol. 1994;23(5):923–30. https://doi.org/10.1093/ije/23.5.923.

    Article  CAS  PubMed  Google Scholar 

  9. Muscat JE, Hoffmann D, Wynder EL. The epidemiology of renal cell carcinoma. A second look. Cancer. 1995;75(10):2552–7. https://doi.org/10.1002/1097-0142(19950515)75:10%3c2552:aid-cncr2820751023%3e3.0.co;2-1.

    Article  CAS  PubMed  Google Scholar 

  10. Parker A, Lohse C, Cheville J, Leibovich B, Igel T, Blute M. Evaluation of the association of current cigarette smoking and outcome for patients with clear cell renal cell carcinoma. Int J Urol. 2008;15(4):304–8. https://doi.org/10.1111/j.1442-2042.2008.01994.x.

    Article  PubMed  Google Scholar 

  11. Lindblad P. Epidemiology of renal cell carcinoma. Scand J Surg. 2004;93(2):88–96. https://doi.org/10.1177/145749690409300202.

    Article  CAS  PubMed  Google Scholar 

  12. Pischon T, Lahmann PH, Boeing H, Tjonneland A, Halkjaer J, Overvad K, et al. Body size and risk of renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer. 2006;118(3):728–38. https://doi.org/10.1002/ijc.21398.

    Article  CAS  PubMed  Google Scholar 

  13. Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM, et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. Faseb J. 2005;19(10):1296–8. https://doi.org/10.1096/fj.04-3099fje.

    Article  CAS  PubMed  Google Scholar 

  14. Li M, Wang Y, Song Y, Bu R, Yin BO, Fei X, et al. MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (Review). Oncol Rep. 2015;33(4):1571–8. https://doi.org/10.3892/or.2015.3799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilhelm M, Veltman JA, Olshen AB, Jain AN, Moore DH, Presti JJ, et al. Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res. 2002;62(4):957–60.

    CAS  PubMed  Google Scholar 

  16. Avery AK, Beckstead J, Renshaw AA, Corless CL. Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am J Surg Pathol. 2000;24(2):203–10. https://doi.org/10.1097/00000478-200002000-00006.

    Article  CAS  PubMed  Google Scholar 

  17. Hemal AK, Kumar A, Kumar R, Wadhwa P, Seth A, Gupta NP. Laparoscopic versus open radical nephrectomy for large renal tumors: a long-term prospective comparison. J Urol. 2007;177(3):862–6. https://doi.org/10.1016/j.juro.2006.10.053.

    Article  CAS  PubMed  Google Scholar 

  18. Hemal AK, Kumar A. A prospective comparison of laparoscopic and robotic radical nephrectomy for T1–2N0M0 renal cell carcinoma. World J Urol. 2009;27(1):89–94. https://doi.org/10.1007/s00345-008-0321-9.

    Article  PubMed  Google Scholar 

  19. Ou YC, Kuan YH, Li JR, Raung SL, Wang CC, Hung YY, et al. Induction of apoptosis by luteolin involving akt inactivation in human 786-o renal cell carcinoma cells. Evid Based Complement Alternat Med. 2013. https://doi.org/10.1155/2013/109105.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang B. Transport characteristics of urea transporter-B. Subcell Biochem. 2014;73:127–35. https://doi.org/10.1007/978-94-017-9343-8_8.

    Article  CAS  PubMed  Google Scholar 

  21. Hediger MA, Smith CP, You G, Lee WS, Kanai Y, Shayakul C. Structure, regulation and physiological roles of urea transporters. Kidney Int. 1996;49(6):1615–23. https://doi.org/10.1038/ki.1996.235.

    Article  CAS  PubMed  Google Scholar 

  22. Sands JM, Timmer RT, Gunn RB. Urea transporters in kidney and erythrocytes. Am J Physiol. 1997;273(3 Pt 2):F321–39. https://doi.org/10.1152/ajprenal.1997.273.3.F321.

    Article  CAS  PubMed  Google Scholar 

  23. Klein JD, Blount MA, Sands JM. Molecular mechanisms of urea transport in health and disease. Pflugers Arch. 2012;464(6):561–72. https://doi.org/10.1007/s00424-012-1157-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shayakul C, Hediger MA. The SLC14 gene family of urea transporters. Pflugers Arch. 2004;447(5):603–9. https://doi.org/10.1007/s00424-003-1124-x.

    Article  CAS  PubMed  Google Scholar 

  25. Berger UV, Tsukaguchi H, Hediger MA. Distribution of mRNA for the facilitated urea transporter UT3 in the rat nervous system. Anat Embryol (Berl). 1998;197(5):405–14. https://doi.org/10.1007/s004290050152.

    Article  CAS  PubMed  Google Scholar 

  26. Olives B, Neau P, Bailly P, Hediger MA, Rousselet G, Cartron JP, et al. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem. 1994;269(50):31649–52.

    Article  CAS  PubMed  Google Scholar 

  27. Trinh-Trang-Tan MM, Lasbennes F, Gane P, Roudier N, Ripoche P, Cartron JP, et al. UT-B1 proteins in rat: tissue distribution and regulation by antidiuretic hormone in kidney. Am J Physiol Renal Physiol. 2002;283(5):F912–22. https://doi.org/10.1152/ajprenal.00359.2001.

    Article  PubMed  Google Scholar 

  28. Tsukaguchi H, Shayakul C, Berger UV, Tokui T, Brown D, Hediger MA. Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. J Clin Invest. 1997;99(7):1506–15. https://doi.org/10.1172/JCI119313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li C, Xue H, Lei Y, Zhu J, Yang B, Gai X. Clinical significance of the reduction of UT-B expression in urothelial carcinoma of the bladder. Pathol Res Pract. 2014;210(12):799–803. https://doi.org/10.1016/j.prp.2014.09.012.

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Sun Y, Zhao Y, Wang Q, Guo H, Guo R, et al. Urea transport B gene induces melanoma B16 cell death via activation of p53 and mitochondrial apoptosis. Cancer Sci. 2018;109(12):3762–73. https://doi.org/10.1111/cas.13825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lau WK, Blute ML, Weaver AL, Torres VE, Zincke H. Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin Proc. 2000;75(12):1236–42. https://doi.org/10.4065/75.12.1236.

    Article  CAS  PubMed  Google Scholar 

  32. Ghoneim IA, Fergany AF. Minimally invasive surgery for renal cell carcinoma. Expert Rev Anticancer Ther. 2009;9(7):989–97. https://doi.org/10.1586/era.09.59.

    Article  PubMed  Google Scholar 

  33. Jonasch E, Wood CG, Matin SF, Tu SM, Pagliaro LC, Corn PG, et al. Phase II presurgical feasibility study of bevacizumab in untreated patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27(25):4076–81. https://doi.org/10.1200/JCO.2008.21.3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coppin C, Porzsolt F, Awa A, Kumpf J, Coldman A, Wilt T. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev. 2005;1:D1425. https://doi.org/10.1002/14651858.CD001425.pub2.

    Article  Google Scholar 

  35. Li Y, Hu Z, Ye Z. COX model analysis of three years clinical data of renal cell carcinoma database. J Modern Urol. 2008;04:294–6.

    Google Scholar 

  36. Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem. 2002;277(12):10633–7. https://doi.org/10.1074/jbc.M200207200.

    Article  CAS  PubMed  Google Scholar 

  37. Sands JM, Blount MA. Genes and proteins of urea transporters. Subcell Biochem. 2014;73:45–63. https://doi.org/10.1007/978-94-017-9343-8_4.

    Article  CAS  PubMed  Google Scholar 

  38. Fenton RA, Yang B. Urea transporter knockout mice and their renal phenotypes. Subcell Biochem. 2014;73:137–52. https://doi.org/10.1007/978-94-017-9343-8_9.

    Article  CAS  PubMed  Google Scholar 

  39. Hou R. Study on the mechanism of abnormal expression of SLC14A1 gene in bladder cancer: Jilin University; 2017. 111p.

  40. Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G, et al. Interferon-dependent SLC14A1(+) cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022. https://doi.org/10.1016/j.ccell.2022.11.005.

    Article  PubMed  Google Scholar 

  41. Dong Z, Ran J, Zhou H, Chen J, Lei T, Wang W, et al. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium. PLoS ONE. 2013;8(10):e76952–8. https://doi.org/10.1371/journal.pone.0076952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan T, Wu W, Li W, Shiao M, Shiue Y, Li C. SLC14A1 prevents oncometabolite accumulation and recruits HDAC1 to transrepress oncometabolite genes in urothelial carcinoma. Theranostics. 2020;10(25):11775–93. https://doi.org/10.7150/thno.51655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie B, Liu X, Longjiang T. Prognostic model of renal cell carcinoma and its clinical application. Int J Urol. 2011;06:782–6.

    Google Scholar 

  44. Cui T, Guo L, Guo S, Qin Q, Zhang K, Dong S. Factors affecting the prognosis of renal cell carcinoma. J Modern Urol. 2009;14(01):42–4.

    Google Scholar 

  45. Xu J, Zhang J, Geng T, Wang Y, Zhang A, Zuo L. Multivariate analysis of survival factors of patients with renal cell carcinoma after radical nephrectomy. Chin Oncol Clin. 2009;36(14):784–7.

    Google Scholar 

  46. Patard JJ, Leray E, Cindolo L, Ficarra V, Rodriguez A, De La Taille A, et al. Multi-institutional validation of a symptom-based classification for renal cell carcinoma. J Urol. 2004;172(3):858–62. https://doi.org/10.1097/01.ju.0000135837.64840.55.

    Article  PubMed  Google Scholar 

  47. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother. 2014;63(7):721–35. https://doi.org/10.1007/s00262-014-1549-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35:S224–43. https://doi.org/10.1016/j.semcancer.2015.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73. https://doi.org/10.1615/critrevoncog.v18.i1-2.40.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci. 2013;14(10):21087–113. https://doi.org/10.3390/ijms141021087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mishra P, Banerjee D, Ben-Baruch A. Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol. 2011;89(1):31–9. https://doi.org/10.1189/jlb.0310182.

    Article  CAS  PubMed  Google Scholar 

  52. Corn PG. The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development. Cancer Manag Res. 2012;4:183–93. https://doi.org/10.2147/CMAR.S32839.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alphonso A, Alahari SK. Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia. 2009;11(12):1264–71. https://doi.org/10.1593/neo.91302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59(19):5002–11. https://doi.org/10.1186/bcr138.

    Article  CAS  PubMed  Google Scholar 

  55. Molavi O, Ma Z, Mahmud A, Alshamsan A, Samuel J, Lai R, et al. Polymeric micelles for the solubilization and delivery of STAT3 inhibitor cucurbitacins in solid tumors. Int J Pharm. 2008;347(1–2):118–27. https://doi.org/10.1016/j.ijpharm.2007.06.032.

    Article  CAS  PubMed  Google Scholar 

  56. Lee MH, Kundu JK, Keum YS, Cho YY, Surh YJ, Choi BY. Resveratrol inhibits IL-6-induced transcriptional activity of AR and STAT3 in human prostate cancer LNCaP-FGC Cells. Biomol Ther (Seoul). 2014;22(5):426–30. https://doi.org/10.4062/biomolther.2014.061.

    Article  CAS  PubMed  Google Scholar 

  57. Panni RZ, Sanford DE, Belt BA, Mitchem JB, Worley LA, Goetz BD, et al. Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother. 2014;63(5):513–28. https://doi.org/10.1007/s00262-014-1527-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wen W, Wu J, Liu L, Tian Y, Buettner R, Hsieh MY, et al. Synergistic anti-tumor effect of combined inhibition of EGFR and JAK/STAT3 pathways in human ovarian cancer. Mol Cancer. 2015;14:100. https://doi.org/10.1186/s12943-015-0366-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li C, Ya G, Tang Z, Su K. MiR-153 targets PRDM2 gene and affects the invasion and migration of bladder cancer through JAK/STAT signaling pathway. Chin J Pathophysiol. 2018;34(01):58–63.

    Google Scholar 

Download references

Acknowledgements

We thank the authors of the GSE161573 for their contribution, and we thank GEPIA database and Xiantao Academic database for providing the platform for data analysis.

Funding

This work was funded by “Clinical + X” project of Binzhou Medical University (BY2021LCX07).

Author information

Authors and Affiliations

Authors

Contributions

WZQ designed and conducted the whole research. LC uses R language to analyze BLCA data from GEO database and TCGA database. WZQ completed the basic experiments related to this study, WZQ and LC completed the data analysis and drafted the manuscript. WYL revised and finalized the manuscript. All authors approved the submitted version.

Corresponding author

Correspondence to Yinglei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

This study was approved by the Ethics Committee of Binzhou Medical University, and all subjects signed the informed consent. Meanwhile, all methods were carried out in accordance with relevant guidelines and regulations or declaration of Helsinki.

Consent for publication

Not applicable.

Additional information

Publisher's Note Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Wang, Y., Li, C. et al. SLC14A1 is a new biomarker in renal cancer. Clin Transl Oncol 25, 2607–2623 (2023). https://doi.org/10.1007/s12094-023-03140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03140-6

Keywords

Navigation