Skip to main content

Advertisement

Log in

Identification of acetyl-CoA carboxylase alpha as a prognostic and targeted candidate for hepatocellular carcinoma

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown.

Methods

The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines.

Results

ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial−mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/β-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis.

Conclusion

ACACA could be a potential biomarker and molecular target for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

References

  1. Mao X, Cheung KS, Peng C, Mak LY, Cheng HM, Fung J, et al. Steatosis, HBV-related hepatocellular carcinoma, cirrhosis & HBsAg seroclearance: a systematic review and meta-analysis. Hepatology. 2022. https://doi.org/10.1002/hep.32792.

    Article  PubMed  Google Scholar 

  2. Zhang J, Wang L, Song Q, Xiao M, Gao J, Cao X, et al. Organoids in recapitulating tumorigenesis driven by risk factors: Current trends and future perspectives. Int J Biol Sci. 2022;18(7):2729–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glišić TM, Perišić MD, Dimitrijevic S, Jurišić V. Doppler assessment of splanchnic arterial flow in patients with liver cirrhosis: correlation with ammonia plasma levels and MELD score. J Clin Ultrasound. 2014;42(5):264–9.

    Article  PubMed  Google Scholar 

  4. Nikulina D, Terentyev A, Galimzyanov K, Jurisic V. Fifty years of discovery of alpha-fetoprotein as the first tumor marker. Srp Arh Celok Lek. 2015;143(1–2):100–4.

    Article  PubMed  Google Scholar 

  5. Jurisic V, Radenkovic S, Konjevic G. The Actual role of LDH as tumor marker, biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:115–24.

    Article  CAS  PubMed  Google Scholar 

  6. Kotoh K, Kato M, Kohjima M, Tanaka M, Miyazaki M, Nakamura K, et al. Lactate dehydrogenase production in hepatocytes is increased at an early stage of acute liver failure. Exp Ther Med. 2011;2(2):195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yau T, Tai D, Chan SL, Huang YH, Choo SP, Hsu C, et al. Systemic treatment of advanced unresectable hepatocellular carcinoma after first-line therapy: expert recommendations from Hong Kong, Singapore, and Taiwan. Liver Cancer. 2022;11(5):426–39.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sonbol MB, Riaz IB, Naqvi SAA, Almquist DR, Mina S, Almasri J, et al. Systemic therapy and sequencing options in advanced hepatocellular carcinoma: a systematic review and network meta-analysis. JAMA Oncol. 2020;6(12): e204930.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem Biophys Res Commun. 2009;385(3):302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang H, Liu S, Cai Z, Dong W, Ye J, Cai Z, et al. Down-regulation of ACACA suppresses the malignant progression of prostate cancer through inhibiting mitochondrial potential. J Cancer. 2021;12(1):232–43.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen L, Duan Y, Wei H, Ning H, Bi C, Zhao Y, et al. Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opin Investig Drugs. 2019;28(10):917–30.

    Article  CAS  PubMed  Google Scholar 

  12. Abu-Elheiga L, Almarza-Ortega DB, Baldini A, Wakil SJ. Human acetyl-CoA carboxylase 2 Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997;272(16):10669–77.

    Article  CAS  PubMed  Google Scholar 

  13. Ponce-Castaneda MV, Lopez-Casillas F, Kim KH. Acetyl-coenzyme A carboxylase messenger ribonucleic acid metabolism in liver, adipose tissues, and mammary glands during pregnancy and lactation. J Dairy Sci. 1991;74(11):4013–21.

    Article  CAS  PubMed  Google Scholar 

  14. Witters LA, Widmer J, King AN, Fassihi K, Kuhajda F. Identification of human acetyl-CoA carboxylase isozymes in tissue and in breast cancer cells. Int J Biochem. 1994;26(4):589–94.

    Article  CAS  PubMed  Google Scholar 

  15. Ma J, Yan R, Zu X, Cheng JM, Rao K, Liao DF, et al. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells. J Biol Chem. 2008;283(6):3418–23.

    Article  CAS  PubMed  Google Scholar 

  16. Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP. Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res. 1997;3(11):2115–20.

    CAS  PubMed  Google Scholar 

  17. Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, et al. Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. Cell Metab. 2019;29(1):174-82 e5.

    Article  CAS  PubMed  Google Scholar 

  18. Chen MM, Li J, Wang Y, Akbani R, Lu Y, Mills GB, et al. TCPA v30: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Mol Cell Proteom. 2019;18(8):S15-s25.

    Article  CAS  Google Scholar 

  19. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucl Acids Res. 2018;46(D1):D956–63.

    Article  CAS  PubMed  Google Scholar 

  23. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173(2):338-54 e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucl Acids Res. 2021;49(D1):D1420–30.

    Article  CAS  PubMed  Google Scholar 

  25. Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G, Colic M. TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 2011;239(3):115–22.

    Article  CAS  PubMed  Google Scholar 

  26. Bian S, Ni W, Zhu M, Zhang X, Qiang Y, Zhang J, et al. Flap endonuclease 1 facilitated hepatocellular carcinoma progression by enhancing USP7/MDM2-mediated P53 inactivation. Int J Biol Sci. 2022;18(3):1022–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu M, Wu M, Bian S, Song Q, Xiao M, Huang H, et al. DNA primase subunit 1 deteriorated progression of hepatocellular carcinoma by activating AKT/mTOR signaling and UBE2C-mediated P53 ubiquitination. Cell Biosci. 2021;11(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bian S, Ni W, Zhu M, Song Q, Zhang J, Ni R, et al. Identification and validation of the N6-Methyladenosine RNA methylation regulator YTHDF1 as a novel prognostic marker and potential target for hepatocellular carcinoma. Front Mol Biosci. 2020;7: 604766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ni W, Bian S, Zhu M, Song Q, Zhang J, Xiao M, et al. Identification and validation of ubiquitin-specific proteases as a novel prognostic signature for hepatocellular carcinoma. Front Oncol. 2021;11: 629327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang G, Ha SA, Kim HK, Yoo J, Kim S, Lee YS, et al. Combined analysis of AFP and HCCR-1 as an useful serological marker for small hepatocellular carcinoma: a prospective cohort study. Dis Markers. 2012;32(4):265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Agopian VG, Harlander-Locke MP, Markovic D, Zarrinpar A, Kaldas FM, Cheng EY, et al. Evaluation of patients with hepatocellular carcinomas that do not produce alpha-fetoprotein. JAMA Surg. 2017;152(1):55–64.

    Article  PubMed  Google Scholar 

  32. Gallo M, Sapio L, Spina A, Naviglio D, Calogero A, Naviglio S. Lactic dehydrogenase and cancer: an overview. Front Biosci (Landmark Ed). 2015;20(8):1234–49.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia R, Hernandez JM, Caballero MD, Gonzalez M, Galende J, del Canizo MC, et al. Serum lactate dehydrogenase level as a prognostic factor in Hodgkin’s disease. Br J Cancer. 1993;68(6):1227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scartozzi M, Faloppi L, Bianconi M, Giampieri R, Maccaroni E, Bittoni A, et al. The role of LDH serum levels in predicting global outcome in HCC patients undergoing TACE: implications for clinical management. PLoS ONE. 2012;7(3): e32653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faloppi L, Scartozzi M, Bianconi M, Svegliati Baroni G, Toniutto P, Giampieri R, et al. The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: implications for clinical management. BMC Cancer. 2014;14:110.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 2006;66(10):5287–94.

    Article  CAS  PubMed  Google Scholar 

  37. Mohapatra P, Chandrasekaran N. Wnt/beta-catenin targeting in liver carcinoma through nanotechnology-based drug repurposing: A review. Biomed Pharmacother. 2022;155: 113713.

    Article  CAS  PubMed  Google Scholar 

  38. Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. beta-Catenin signaling in hepatocellular carcinoma. J Clin Invest. 2022. https://doi.org/10.1172/JCI154515.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, et al. Prodigiosin inhibits Wnt/beta-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci USA. 2016;113(46):13150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu J, Sun G, Pan S, Qin M, Ouyang R, Li Z, et al. The Cancer Genome Atlas (TCGA) based m(6)A methylation-related genes predict prognosis in hepatocellular carcinoma. Bioengineered. 2020;11(1):759–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ding J, Zheng Y, Wang G, Zheng J, Chai D. The performance and perspectives of dendritic cell vaccines modified by immune checkpoint inhibitors or stimulants. Biochim Biophys Acta Rev Cancer. 2022;1877(5): 188763.

    Article  CAS  PubMed  Google Scholar 

  43. Sahin Y. LncRNA H19 is a potential biomarker and correlated with immune infiltration in thyroid carcinoma. Clin Exp Med. 2022. https://doi.org/10.1007/s10238-022-00853-w.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from National Natural Science Foundation (82070622, 82272839, 81702419), the Key Research and Development Plan of Jiangsu Province (BE2020668), and Science project of Nantong City (JCZ21041).

Author information

Authors and Affiliations

Authors

Contributions

WZ and JZ designed and supervised this study. YS, ZN, and SX conducted the experiments. YS drafted the manuscript. JZ and WZ performed the revision. XW and SQ performed the bioinformatics and statistics. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Wenjie Zheng or Jie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The studies involving human participants were reviewed and approved by the Ethics Committee of Affiliated Hospital of Nantong University (2022-L092).  

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4938 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wang, X., Ni, Z. et al. Identification of acetyl-CoA carboxylase alpha as a prognostic and targeted candidate for hepatocellular carcinoma. Clin Transl Oncol 25, 2499–2513 (2023). https://doi.org/10.1007/s12094-023-03137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03137-1

Keywords

Navigation