Skip to main content

Advertisement

Log in

Purinergic P2X7R as a potential target for pancreatic cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Pancreatic cancer is one of the deadliest types of cancer, with a death rate nearly equal to the incidence. The P2X7 receptor (P2X7R) is a kind of extracellular adenosine triphosphate (ATP)-gated ion channel with special permeability, which exists in most tissues of human body and mediates inflammation-related signaling pathways and immune signal transduction after activation. P2X7R is also present on the surface of several tumor cells and is involved in tumor growth and progression. P2X7R expression in pancreatic cancer has also been identified in recent studies. Activation of P2X7R in pancreatic cancer can support the proliferation of pancreatic stellate cells, participate in protein interactions, and mediate ERK1/2, IL-6/STAT3, hCAP-18/LL-37, PI3K/AKT signaling pathways to promote pancreatic cancer progression. Inhibitors targeting P2X7R can inhibit the development of pancreatic cancer and are expected to be used in clinical therapy. Therefore, P2X7R is promising as a potential therapeutic target for pancreatic cancer. This article reviews the progress of research on P2X7R in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

Not applicable.

References

  1. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:9694–705. https://doi.org/10.3748/wjg.v22.i44.9694.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326:851–62. https://doi.org/10.1001/jama.2021.13027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395:2008–20. https://doi.org/10.1016/S0140-6736(20)30974-0.

    Article  CAS  PubMed  Google Scholar 

  4. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20. https://doi.org/10.1016/S0140-6736(10)62307-0.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol. 2004;240:31–304. https://doi.org/10.1016/s0074-7696(04)40002-3.

    Article  CAS  PubMed  Google Scholar 

  6. Cai X, Yao Y, Teng F, Li Y, Wu L, Yan W, et al. The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity. Int Immunopharmacol. 2021;101:108297. https://doi.org/10.1016/j.intimp.2021.108297.

    Article  CAS  PubMed  Google Scholar 

  7. Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, et al. P2X7 in cancer: from molecular mechanisms to therapeutics. Front Pharmacol. 2020;11:793. https://doi.org/10.3389/fphar.2020.00793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aria H, Rezaei M, Nazem S, Daraei A, Nikfar G, Mansoori B, et al. Purinergic receptors are a key bottleneck in tumor metabolic reprogramming: the prime suspect in cancer therapeutic resistance. Front Immunol. 2022;13:947885. https://doi.org/10.3389/fimmu.2022.947885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Notomi S, Hisatomi T, Kanemaru T, Takeda A, Ikeda Y, Enaida H, et al. Critical involvement of extracellular ATP acting on P2RX7 purinergic receptors in photoreceptor cell death. Am J Pathol. 2011;179:2798–809. https://doi.org/10.1016/j.ajpath.2011.08.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roger S, Pelegrin P. P2X7 receptor antagonism in the treatment of cancers. Expert Opin Investig Drugs. 2011;20:875–80. https://doi.org/10.1517/13543784.2011.583918.

    Article  CAS  PubMed  Google Scholar 

  11. Novak I, Yu H, Magni L, Deshar G. Purinergic signaling in pancreas-from physiology to therapeutic strategies in pancreatic cancer. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21228781.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017;47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020.

    Article  CAS  PubMed  Google Scholar 

  13. Giannuzzo A, Pedersen SF, Novak I. The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer. 2015;14:203. https://doi.org/10.1186/s12943-015-0472-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pothula SP, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology. 2020;20:409–18. https://doi.org/10.1016/j.pan.2020.01.003.

    Article  CAS  PubMed  Google Scholar 

  15. Magni L, Bouazzi R, Heredero Olmedilla H, Petersen PSS, Tozzi M, Novak I. The P2X7 receptor stimulates IL-6 release from pancreatic stellate cells and tocilizumab prevents activation of STAT3 in pancreatic cancer cells. Cells. 2021. https://doi.org/10.3390/cells10081928.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Choi JH, Ji YG, Ko JJ, Cho HJ, Lee DH. Activating P2X7 Receptors Increases Proliferation of Human Pancreatic Cancer Cells via ERK1/2 and JNK. Pancreas. 2018;47:643–51. https://doi.org/10.1097/MPA.0000000000001055.

    Article  CAS  PubMed  Google Scholar 

  17. Sainz B Jr, Alcala S, Garcia E, Sanchez-Ripoll Y, Azevedo MM, Cioffi M, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut. 2015;64:1921–35. https://doi.org/10.1136/gutjnl-2014-308935.

    Article  CAS  PubMed  Google Scholar 

  18. Campos-Contreras ADR, Diaz-Munoz M, Vazquez-Cuevas FG. Purinergic signaling in the hallmarks of cancer. Cells. 2020. https://doi.org/10.3390/cells9071612.

    Article  PubMed  PubMed Central  Google Scholar 

  19. von Muecke-Heim IA, Ries C, Urbina L, Deussing JM. P2X7R antagonists in chronic stress-based depression models: a review. Eur Arch Psychiatry Clin Neurosci. 2021;271:1343–58. https://doi.org/10.1007/s00406-021-01306-3.

    Article  Google Scholar 

  20. Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29:5346–58. https://doi.org/10.1038/onc.2010.292.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobson KA, Paoletta S, Katritch V, Wu B, Gao ZG, Zhao Q, et al. Nucleotides acting at P2Y receptors: connecting structure and function. Mol Pharmacol. 2015;88:220–30. https://doi.org/10.1124/mol.114.095711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 2014;66:638–75. https://doi.org/10.1124/pr.113.008003.

    Article  CAS  PubMed  Google Scholar 

  23. Di Virgilio F, Schmalzing G, Markwardt F. The elusive P2X7 macropore. Trends Cell Biol. 2018;28:392–404. https://doi.org/10.1016/j.tcb.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  24. Di Virgilio F, Jiang LH, Roger S, Falzoni S, Sarti AC, Vultaggio-Poma V, et al. Structure, function and techniques of investigation of the P2X7 receptor (P2X7R) in mammalian cells. Methods Enzymol. 2019;629:115–50. https://doi.org/10.1016/bs.mie.2019.07.043.

    Article  CAS  PubMed  Google Scholar 

  25. De Salis SKF, Li L, Chen Z, Lam KW, Skarratt KK, Balle T, et al. Alternatively spliced isoforms of the P2X7 receptor: structure, function and disease associations. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23158174.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Denlinger LC, Fisette PL, Sommer JA, Watters JJ, Prabhu U, Dubyak GR, et al. Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide. J Immunol (Baltimore Md: 1950). 2001;167(2001):1871–6. https://doi.org/10.4049/jimmunol.167.4.1871.

    Article  CAS  Google Scholar 

  27. Cunha SR, Mohler PJ. Ankyrin protein networks in membrane formation and stabilization. J Cell Mol Med. 2009;13:4364–76. https://doi.org/10.1111/j.1582-4934.2009.00943.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smart ML, Gu B, Panchal RG, Wiley J, Cromer B, Williams DA, et al. P2X7 receptor cell surface expression and cytolytic pore formation are regulated by a distal C-terminal region. J Biol Chem. 2003;278:8853–60. https://doi.org/10.1074/jbc.M211094200.

    Article  CAS  PubMed  Google Scholar 

  29. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science (New York, NY.). 1996;272:735–8. https://doi.org/10.1126/science.272.5262.735.

    Article  CAS  Google Scholar 

  30. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996;4:387–96. https://doi.org/10.1016/s1074-7613(00)80252-6.

    Article  CAS  PubMed  Google Scholar 

  31. Wittmann I, Schönefeld M, Aichele D, Groer G, Gessner A, Schnare M. Murine bactericidal/permeability-increasing protein inhibits the endotoxic activity of lipopolysaccharide and gram-negative bacteria. J Immunol (Baltimore Md: 1950). 2008;180(2008):7546–52. https://doi.org/10.4049/jimmunol.180.11.7546.

    Article  CAS  Google Scholar 

  32. Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH. Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta. 2015;1848:2584–602. https://doi.org/10.1016/j.bbamem.2014.10.029.

    Article  CAS  PubMed  Google Scholar 

  33. Illes P, Muller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol. 2021;178:489–514. https://doi.org/10.1111/bph.15299.

    Article  CAS  PubMed  Google Scholar 

  34. Gu BJ, Saunders BM, Jursik C, Wiley JS. The P2X7-nonmuscle myosin membrane complex regulates phagocytosis of nonopsonized particles and bacteria by a pathway attenuated by extracellular ATP. Blood. 2010;115:1621–31. https://doi.org/10.1182/blood-2009-11-251744.

    Article  CAS  PubMed  Google Scholar 

  35. Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 2006;25:5071–82. https://doi.org/10.1038/sj.emboj.7601378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ugur M, Ugur O. A mechanism-based approach to P2X7 receptor action. Mol Pharmacol. 2019;95:442–50. https://doi.org/10.1124/mol.118.115022.

    Article  CAS  PubMed  Google Scholar 

  37. Kopp R, Krautloher A, Ramirez-Fernandez A, Nicke A. P2X7 interactions and signaling—making head or tail of it. Front Mol Neurosci. 2019;12:183. https://doi.org/10.3389/fnmol.2019.00183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F. The P2X7 receptor: a main player in inflammation. Biochem Pharmacol. 2018;151:234–44. https://doi.org/10.1016/j.bcp.2017.12.021.

    Article  CAS  PubMed  Google Scholar 

  39. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, et al. Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res. 2012;72:2957–69. https://doi.org/10.1158/0008-5472.CAN-11-1947.

    Article  CAS  PubMed  Google Scholar 

  40. Grassi F, De Ponte Conti B. The P2X7 receptor in tumor immunity. Front Cell Dev Biol. 2021;9:694831. https://doi.org/10.3389/fcell.2021.694831.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer. 2018;18:601–18. https://doi.org/10.1038/s41568-018-0037-0.

    Article  CAS  PubMed  Google Scholar 

  42. Park M, Kim J, Phuong NTT, Park JG, Park JH, Kim YC, et al. Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production. Sci Rep. 2019;9:11587. https://doi.org/10.1038/s41598-019-47734-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, et al. Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology. 2008;149:389–96. https://doi.org/10.1210/en.2007-1223.

    Article  CAS  PubMed  Google Scholar 

  44. Vazquez-Cuevas FG, Martinez-Ramirez AS, Robles-Martinez L, Garay E, Garcia-Carranca A, Perez-Montiel D, et al. Paracrine stimulation of P2X7 receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J Cell Biochem. 2014;115:1955–66. https://doi.org/10.1002/jcb.24867.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Ding J, Wang L. The role of P2X7 receptor in prognosis and metastasis of colorectal cancer. Adv Med Sci. 2019;64:388–94. https://doi.org/10.1016/j.advms.2019.05.002.

    Article  PubMed  Google Scholar 

  46. Boldrini L, Giordano M, Alì G, Servadio A, Pelliccioni S, Niccoli C, et al. P2X7 protein expression and polymorphism in non-small cell lung cancer (NSCLC). J Negat Results Biomed. 2014;13:16. https://doi.org/10.1186/1477-5751-13-16.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pegoraro A, Adinolfi E. The ATP/P2X7 axis is a crucial regulator of leukemic initiating cells proliferation and homing and an emerging therapeutic target in acute myeloid leukemia. Purinergic Signal. 2021;17:319–21. https://doi.org/10.1007/s11302-021-09789-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pegoraro A, De Marchi E, Ferracin M, Orioli E, Zanoni M, Bassi C, et al. P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis. 2021;12:1088. https://doi.org/10.1038/s41419-021-04378-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Slater M, Danieletto S, Gidley-Baird A, Teh LC, Barden JA. Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors. Histopathology. 2004;44:206–15. https://doi.org/10.1111/j.0309-0167.2004.01798.x.

    Article  CAS  PubMed  Google Scholar 

  50. Sun SH. Roles of P2X7 receptor in glial and neuroblastoma cells: the therapeutic potential of P2X7 receptor antagonists. Mol Neurobiol. 2010;41:351–5. https://doi.org/10.1007/s12035-010-8120-x.

    Article  CAS  PubMed  Google Scholar 

  51. Liu H, Liu W, Liu Z, Liu Y, Zhang W, Xu L, et al. Prognostic value of purinergic P2X7 receptor expression in patients with hepatocellular carcinoma after curative resection. Tumour Biol. 2015;36:5039–49. https://doi.org/10.1007/s13277-015-3155-2.

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Zhou L, Feng YH, Abdul-Karim FW, Gorodeski GI. The P2X7 receptor: a novel biomarker of uterine epithelial cancers. Cancer Epidemiol Biomarkers Prev. 2006;15:1906–13. https://doi.org/10.1158/1055-9965.EPI-06-0407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li X, Qi X, Zhou L, Catera D, Rote NS, Potashkin J, et al. Decreased expression of P2X7 in endometrial epithelial pre-cancerous and cancer cells. Gynecol Oncol. 2007;106:233–43. https://doi.org/10.1016/j.ygyno.2007.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6. https://doi.org/10.1242/jcs.116392.

    Article  CAS  PubMed  Google Scholar 

  55. Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal. 2018;14:1–18. https://doi.org/10.1007/s11302-017-9593-0.

    Article  CAS  PubMed  Google Scholar 

  56. Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, et al. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell. 2005;16:3260–72. https://doi.org/10.1091/mbc.e04-11-1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Andrade Mello P, Bian S, Savio LEB, Zhang H, Zhang J, Junger W, et al. Hyperthermia and associated changes in membrane fluidity potentiate P2X7 activation to promote tumor cell death. Oncotarget. 2017;8:67254–68. https://doi.org/10.18632/oncotarget.18595.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Feng YH, Li X, Wang L, Zhou L, Gorodeski GI. A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization. J Biol Chem. 2006;281:17228–37. https://doi.org/10.1074/jbc.M602999200.

    Article  CAS  PubMed  Google Scholar 

  59. Pegoraro A, De Marchi E, Adinolfi E. P2X7 variants in oncogenesis. Cells. 2021. https://doi.org/10.3390/cells10010189.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Giuliani AL, Colognesi D, Ricco T, Roncato C, Capece M, Amoroso F, et al. Trophic activity of human P2X7 receptor isoforms A and B in osteosarcoma. PLoS ONE. 2014;9:e107224. https://doi.org/10.1371/journal.pone.0107224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gilbert SM, Gidley Baird A, Glazer S, Barden JA, Glazer A, Teh LC, et al. A phase I clinical trial demonstrates that nfP2X(7) -targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. Br J Dermatol. 2017;177:117–24. https://doi.org/10.1111/bjd.15364.

    Article  CAS  PubMed  Google Scholar 

  62. Qiao C, Tang Y, Li Q, Zhu X, Peng X, Zhao R. ATP-gated P2X7 receptor as a potential target for prostate cancer. Hum Cell. 2022;35:1346–54. https://doi.org/10.1007/s13577-022-00729-x.

    Article  CAS  PubMed  Google Scholar 

  63. Qian F, Xiao J, Hu B, Sun N, Yin W, Zhu J. High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Hum Pathol. 2017;64:61–8. https://doi.org/10.1016/j.humpath.2017.03.019.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Cheng H, Li W, Wu H, Yang Y. Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3beta/beta-catenin and mTOR/HIF1alpha/VEGF signaling. Int J Cancer. 2019;145:1068–82. https://doi.org/10.1002/ijc.32207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tan C, Han LI, Zou L, Luo C, Liu A, Sheng X, et al. Expression of P2X7R in breast cancer tissue and the induction of apoptosis by the gene-specific shRNA in MCF-7 cells. Exp Ther Med. 2015;10:1472–8. https://doi.org/10.3892/etm.2015.2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qin J, Zhang X, Tan B, Zhang S, Yin C, Xue Q, et al. Blocking P2X7-mediated macrophage polarization overcomes treatment resistance in lung cancer. Cancer Immunol Res. 2020;8:1426–39. https://doi.org/10.1158/2326-6066.CIR-20-0123.

    Article  CAS  PubMed  Google Scholar 

  67. Ghalali A, Wiklund F, Zheng H, Stenius U, Hogberg J. Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis. 2014;35:1547–55. https://doi.org/10.1093/carcin/bgu019.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Y, Li F, Wang L, Lou Y. A438079 affects colorectal cancer cell proliferation, migration, apoptosis, and pyroptosis by inhibiting the P2X7 receptor. Biochem Biophys Res Commun. 2021;558:147–53. https://doi.org/10.1016/j.bbrc.2021.04.076.

    Article  CAS  PubMed  Google Scholar 

  69. de Andrade Mello P, Coutinho-Silva R, Savio LEB. Multifaceted effects of extracellular adenosine triphosphate and adenosine in the tumor-host interaction and therapeutic perspectives. Front Immunol. 2017;8:1526. https://doi.org/10.3389/fimmu.2017.01526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. He X, Wan J, Yang X, Zhang X, Huang D, Li X, et al. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. J Clin Invest. 2021. https://doi.org/10.1172/JCI140242.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Künzli BM, Berberat PO, Giese T, Csizmadia E, Kaczmarek E, Baker C, et al. Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am J Physiol Gastrointest Liver Physiol. 2007;292:G223–230. https://doi.org/10.1152/ajpgi.00259.2006.

    Article  CAS  PubMed  Google Scholar 

  72. Mohammed A, Janakiram NB, Madka V, Pathuri G, Li Q, Ritchie R, et al. Lack of chemopreventive effects of P2X7R inhibitors against pancreatic cancer. Oncotarget. 2017;8:97822–34. https://doi.org/10.18632/oncotarget.22085.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang GX, Wang MX, Nie W, Liu DW, Zhang Y, Liu HB. P2X7R blockade prevents NLRP3 inflammasome activation and pancreatic fibrosis in a mouse model of chronic pancreatitis. Pancreas. 2017;46:1327–35. https://doi.org/10.1097/MPA.0000000000000928.

    Article  CAS  PubMed  Google Scholar 

  74. Apte M, Pirola RC, Wilson JS. Pancreatic stellate cell: physiologic role, role in fibrosis and cancer. Curr Opin Gastroenterol. 2015;31:416–23. https://doi.org/10.1097/MOG.0000000000000196.

    Article  CAS  PubMed  Google Scholar 

  75. Masamune A, Watanabe T, Kikuta K, Shimosegawa T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol. 2009;7:S48-54. https://doi.org/10.1016/j.cgh.2009.07.038.

    Article  CAS  PubMed  Google Scholar 

  76. Künzli BM, Nuhn P, Enjyoji K, Banz Y, Smith RN, Csizmadia E, et al. Disordered pancreatic inflammatory responses and inhibition of fibrosis in CD39-null mice. Gastroenterology. 2008;134:292–305. https://doi.org/10.1053/j.gastro.2007.10.030.

    Article  CAS  PubMed  Google Scholar 

  77. Haanes KA, Schwab A, Novak I. The P2X7 receptor supports both life and death in fibrogenic pancreatic stellate cells. PLoS ONE. 2012;7:e51164. https://doi.org/10.1371/journal.pone.0051164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fallah G, Romer T, Detro-Dassen S, Braam U, Markwardt F, Schmalzing G. TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels. Mol Cell Proteomics. 2011;10:M110 004697. https://doi.org/10.1074/mcp.M110.004697.

    Article  CAS  PubMed  Google Scholar 

  79. Stolz M, Klapperstuck M, Kendzierski T, Detro-Dassen S, Panning A, Schmalzing G, et al. Homodimeric anoctamin-1, but not homodimeric anoctamin-6, is activated by calcium increases mediated by the P2Y1 and P2X7 receptors. Pflugers Arch. 2015;467:2121–40. https://doi.org/10.1007/s00424-015-1687-3.

    Article  CAS  PubMed  Google Scholar 

  80. Mazzone A, Eisenman ST, Strege PR, Yao Z, Ordog T, Gibbons SJ, et al. Inhibition of cell proliferation by a selective inhibitor of the Ca(2+)-activated Cl(-) channel, Ano1. Biochem Biophys Res Commun. 2012;427:248–53. https://doi.org/10.1016/j.bbrc.2012.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang B, Zhu XX, Pan LY, Chen HF, Shen XY. PP4C facilitates lung cancer proliferation and inhibits apoptosis via activating MAPK/ERK pathway. Pathol Res Pract. 2020;216:152910. https://doi.org/10.1016/j.prp.2020.152910.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Q, Li T, Wang Z, Kuang X, Shao N, Lin Y. lncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway. J Cell Mol Med. 2020;24:8236–47. https://doi.org/10.1111/jcmm.15499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jin C, Chen Z, Shi W, Lian Q. Tropomodulin 3 promotes liver cancer progression by activating the MAPK/ERK signaling pathway. Oncol Rep. 2019;41:3060–8. https://doi.org/10.3892/or.2019.7052.

    Article  CAS  PubMed  Google Scholar 

  84. Yan Z, Ohuchida K, Fei S, Zheng B, Guan W, Feng H, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 2019;38:221. https://doi.org/10.1186/s13046-019-1226-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tan G, Huang C, Chen J, Zhi F. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J Hematol Oncol. 2020;13:149. https://doi.org/10.1186/s13045-020-00985-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204. https://doi.org/10.1016/j.ctrv.2003.07.007.

    Article  CAS  PubMed  Google Scholar 

  87. Hsieh AC, Truitt ML, Ruggero D. Oncogenic AKTivation of translation as a therapeutic target. Br J Cancer. 2011;105:329–36. https://doi.org/10.1038/bjc.2011.241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mistafa O, Stenius U. Statins inhibit Akt/PKB signaling via P2X7 receptor in pancreatic cancer cells. Biochem Pharmacol. 2009;78:1115–26. https://doi.org/10.1016/j.bcp.2009.06.016.

    Article  CAS  PubMed  Google Scholar 

  89. Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer. 2016;139:2540–52. https://doi.org/10.1002/ijc.30380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sperb N, Tsesmelis M, Wirth T. Crosstalk between tumor and stromal cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21155486.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mohammed A, Qian L, Janakiram NB, Lightfoot S, Steele VE, Rao CV. Atorvastatin delays progression of pancreatic lesions to carcinoma by regulating PI3/AKT signaling in p48Cre/+ LSL-KrasG12D/+ mice. Int J Cancer. 2012;131:1951–62. https://doi.org/10.1002/ijc.27456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dong X, Fu J, Yin X, Cao S, Li X, Lin L, et al. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016;30:1207–18. https://doi.org/10.1002/ptr.5631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu L, Zou J, Liu X, Jiang LH, Li J. Inhibition of ATP-induced macrophage death by emodin via antagonizing P2X7 receptor. Eur J Pharmacol. 2010;640:15–9. https://doi.org/10.1016/j.ejphar.2010.04.036.

    Article  CAS  PubMed  Google Scholar 

  94. Zhu T, Zhang L, Ling S, Duan J, Qian F, Li Y, et al. Scropolioside B inhibits IL-1beta and cytokines expression through NF-kappaB and inflammasome NLRP3 pathways. Mediators Inflamm. 2014. https://doi.org/10.1155/2014/819053.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rodgers MA, Bowman JW, Fujita H, Orazio N, Shi M, Liang Q, et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med. 2014;211:1333–47. https://doi.org/10.1084/jem.20132486.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang Q, Hu F, Guo F, Zhou Q, Xiang H, Shang D. Emodin attenuates adenosine triphosphate-induced pancreatic ductal cell injury in vitro via the inhibition of the P2X7/NLRP3 signaling pathway. Oncol Rep. 2019;42:1589–97. https://doi.org/10.3892/or.2019.7270.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Q, Tao X, Xia S, Qu J, Song H, Liu J, et al. Emodin attenuated severe acute pancreatitis via the P2X ligand-gated ion channel 7/NOD-like receptor protein 3 signaling pathway. Oncol Rep. 2019;41:270–8. https://doi.org/10.3892/or.2018.6844.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Shandong Provincial Natural Science Foundation (No. ZR2021MH306) and the National Natural Science Foundation of China (no. 81770915).

Author information

Authors and Affiliations

Authors

Contributions

QY and XW: literature searching, manuscript writing and figure preparing. XL and XB: literature searching and manuscript revision. XP and RZ: conception and supervised the current review. All of the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ronglan Zhao or Xiaoxiang Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Wang, X., Li, X. et al. Purinergic P2X7R as a potential target for pancreatic cancer. Clin Transl Oncol 25, 2297–2305 (2023). https://doi.org/10.1007/s12094-023-03123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03123-7

Keywords

Navigation