Skip to main content

Advertisement

Log in

The huge potential of targeting copper status in the treatment of colorectal cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) commonly leads to cancer deaths and is often diagnosed at advanced stages. It also faces difficulties due to the poor results of conventional treatments such as surgery, chemotherapy, and radiotherapy. Copper is a mineral nutrient whose intrinsic properties have a two-way effect on the production and treatment of cancer. Copper's redox properties allow it to be used in developing anti-cancer drugs, while its potential toxicity leads to oxidative stress and even cancer. Copper status is closely related to colorectal tumors’ proliferation and metastasis. The study of the mechanisms of copper homeostasis, cuproplasia, and cuproptosis due to altered copper status plays a crucial role in developing anticancer drugs. Therefore, targeting alteration of copper status becomes a potential option for treating colorectal cancer. This review summarizes the mechanisms by which altered copper status causes CRC progression and emphasizes the potential of regulating copper status in treating CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No new data were generated or analysed in support of this research.

Abbreviations

CRC:

Colorectal cancer

IECs:

Intestinal epithelial cells

CTR1:

Copper Transporter 1

SLC31A1:

Solute carrier family 31 member 1

ATOX1:

Antioxidant-protein 1

CCS:

Copper chaperone for SOD1

SCO:

Synthesis of cytochrome c oxidase

COX:

Cytochrome c oxidase

TGN:

Trans-Golgi network

PDE3B:

Phosphodiesterase 3B

MEK1:

Mitogen-activated protein kinase 1

ERK1:

Extracellular signal-regulated kinase 1

ULK1:

Unc51-like kinase 1

ROS:

Reactive oxygen species

ES:

Elesclomol

ETC:

Electron transport chain

TCA:

Tricarboxylic acid

EMT:

Epithelial-to-mesenchymal transition

ECM:

Extracellular matrix

LOX:

Lysyl oxidase

FAK1:

Focal adhesion kinase 1

HRE:

Hypoxia response element

VEGF:

Vascular endothelial growth factor

TGF-β:

Transforming growth factor beta

NO:

Nitric oxide

eNOS:

Endothelial nitric oxide synthase

HUVEC:

Human umbilical vein endothelial cells

GPER:

G protein estrogen receptor

TTM:

Tetrathiomolybdate

D-pen:

D-penicillamine

TPEN:

N, N, N', N’-tetrakis-[2-pyridylmethyl]-ethylenediamine

DSF:

Disulfiram

CQ:

Clioquinol

UPS:

Ubiquitin proteasome system

ALDH:

Acetaldehyde dehydrogenase

ULK1:

Unc-51-like autophagy-activated kinase 1

XIAP:

X-linked inhibitor of apoptosis protein

GTSM:

Glyoxal-bis (N4-methylthiosemicarbazone)

ATSM:

Diacetyl-bis (N4-methylthiosemicarbazone)

CDKN1A:

Cell cycle protein-dependent kinase inhibitor 1A

ER:

Endoplasmic reticulum

UPR:

Unfolded protein response

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138(6):2101-2114.e2105.

    Article  PubMed  Google Scholar 

  3. Johdi NA, Sukor NF. Colorectal cancer immunotherapy: options and strategies. Front Immunol. 2020;11:1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arredondo M, Núñez MT. Iron and copper metabolism. Mol Asp Med. 2005;26(4–5):313–27.

    Article  CAS  Google Scholar 

  5. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 2021;1868(2): 118893.

    Article  CAS  PubMed  Google Scholar 

  6. Garber K. Cancer’s copper connections. Science. 2015;349(6244):129.

    Article  PubMed  Google Scholar 

  7. Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem. 2010;79:537–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Luca A, Barile A, Arciello M, Rossi L. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. J Trace Elem Med Biol. 2019;55:204–13.

    Article  PubMed  Google Scholar 

  9. Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 2021;8: 711227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15(1):174.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Waggoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative disease. Neurobiol Dis. 1999;6(4):221–30.

    Article  CAS  PubMed  Google Scholar 

  12. Kidane TZ, Farhad R, Lee KJ, Santos A, Russo E, Linder MC. Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated. Biometals. 2012;25(4):697–709.

    Article  CAS  PubMed  Google Scholar 

  13. Ohrvik H, Thiele DJ. How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann N Y Acad Sci. 2014;1314:32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Molloy SA, Kaplan JH. Copper-dependent recycling of hCTR1, the human high affinity copper transporter. J Biol Chem. 2009;284(43):29704–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bertinato J, L’Abbé MR. Copper modulates the degradation of copper chaperone for Cu, Zn superoxide dismutase by the 26 S proteosome. J Biol Chem. 2003;278(37):35071–8.

    Article  CAS  PubMed  Google Scholar 

  16. Horn D, Barrientos A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life. 2008;60(7):421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leary SC. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid Redox Signal. 2010;13(9):1403–16.

    Article  CAS  PubMed  Google Scholar 

  18. La Fontaine S, Mercer JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys. 2007;463(2):149–67.

    Article  PubMed  Google Scholar 

  19. Arnesano F, Banci L, Bertini I, Thompsett AR. Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure. 2002;10(10):1337–47.

    Article  CAS  PubMed  Google Scholar 

  20. Song Y, Chen S, Li L, Zeng Y, Hu X. The hypopigmentation mechanism of tyrosinase inhibitory peptides derived from food proteins: an overview. Molecules. 2022;27(9):2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krishnamoorthy L, Cotruvo JA Jr, Chan J, Kaluarachchi H, Muchenditsi A, Pendyala VS, et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol. 2016;12(8):586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol. 2012;32(7):1284–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 2020;22(4):412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102–13.

    Article  CAS  PubMed  Google Scholar 

  25. Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B. The multifaceted roles of copper in cancer: a trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers (Basel). 2020;12(12):3594.

    Article  PubMed  Google Scholar 

  26. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adelmann CH, Wang T, Sabatini DM, Lander ES. Genome-wide CRISPR/Cas9 screening for identification of cancer genes in cell lines. Methods Mol Biol. 2019;1907:125–36.

    Article  CAS  PubMed  Google Scholar 

  28. Urra FA, Weiss-López B, Araya-Maturana R. Determinants of anti-cancer effect of mitochondrial electron transport chain inhibitors: bioenergetic profile and metabolic flexibility of cancer cells. Curr Pharm Des. 2016;22(39):5998–6008.

    Article  CAS  PubMed  Google Scholar 

  29. Baszuk P, Marciniak W, Derkacz R, Jakubowska A, Cybulski C, Gronwald J, et al. Blood copper levels and the occurrence of colorectal cancer in Poland. Biomedicines. 2021;9(11):1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ranjbary AG, Mehrzad J, Dehghani H, Abdollahi A, Hosseinkhani S. Variation in blood and colorectal epithelia’s key trace elements along with expression of mismatch repair proteins from localized and metastatic colorectal cancer patients. Biol Trace Elem Res. 2020;194(1):66–75.

    Article  PubMed  Google Scholar 

  31. Lossow K, Schwarz M, Kipp AP. Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol. 2021;42: 101900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Itoh S, Kim HW, Nakagawa O, Ozumi K, Lessner SM, Aoki H, et al. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem. 2008;283(14):9157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Luo C, Shan C, You Q, Lu J, Elf S, et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem. 2015;7(12):968–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jana A, Das A, Krett NL, Guzman G, Thomas A, Mancinelli G, et al. Nuclear translocation of Atox1 potentiates activin A-induced cell migration and colony formation in colon cancer. PLoS ONE. 2020;15(1): e0227916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aubert L, Nandagopal N, Steinhart Z, Lavoie G, Nourreddine S, Berman J, et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun. 2020;11(1):3701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barresi V, Trovato-Salinaro A, Spampinato G, Musso N, Castorina S, Rizzarelli E, et al. Transcriptome analysis of copper homeostasis genes reveals coordinated upregulation of SLC31A1, SCO1, and COX11 in colorectal cancer. FEBS Open Bio. 2016;6(8):794–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11(1):900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic reprogramming of colorectal cancer cells and the microenvironment: implication for therapy. Int J Mol Sci. 2021;22(12):6262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84.

    Article  CAS  PubMed  Google Scholar 

  40. El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM, et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci U S A. 2012;109(43):17460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baker AM, Bird D, Lang G, Cox TR, Erler JT. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene. 2013;32(14):1863–8.

    Article  CAS  PubMed  Google Scholar 

  42. Feng W, Ye F, Xue W, Zhou Z, Kang YJ. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 2009;75(1):174–82.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao Q, Ge G. Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. Cancer Microenviron. 2012;5(3):261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baker AM, Cox TR, Bird D, Lang G, Murray GI, Sun XF, et al. The role of lysyl oxidase in SRC-dependent proliferation and metastasis of colorectal cancer. J Natl Cancer Inst. 2011;103(5):407–24.

    Article  CAS  PubMed  Google Scholar 

  45. Liu G, Zhan W, Guo W, Hu F, Qin J, Li R, et al. MELK accelerates the progression of colorectal cancer via activating the FAK/Src pathway. Biochem Genet. 2020;58(5):771–82.

    Article  CAS  PubMed  Google Scholar 

  46. Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A. 2011;108(39):16369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pez F, Dayan F, Durivault J, Kaniewski B, Aimond G, Le Provost GS, et al. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res. 2011;71(5):1647–57.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20(6):660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin F, Linden T, Katschinski DM, Oehme F, Flamme I, Mukhopadhyay CK, et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood. 2005;105(12):4613–9.

    Article  CAS  PubMed  Google Scholar 

  50. Urso E, Maffia M. Behind the link between copper and angiogenesis: established mechanisms and an overview on the role of vascular copper transport systems. J Vasc Res. 2015;52(3):172–96.

    Article  CAS  PubMed  Google Scholar 

  51. Rigiracciolo DC, Scarpelli A, Lappano R, Pisano A, Santolla MF, De Marco P, et al. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget. 2015;6(33):34158–77.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Narayanan IG, Natarajan SK. Peptides derived from histidine and methionine-rich regions of copper transporter 1 exhibit anti-angiogenic property by chelating extracellular Cu. Chem Biol Drug Des. 2018;91(3):797–804.

    Article  CAS  PubMed  Google Scholar 

  53. Chen GF, Sudhahar V, Youn SW, Das A, Cho J, Kamiya T, et al. Copper transport protein antioxidant-1 promotes inflammatory neovascularization via chaperone and transcription factor function. Sci Rep. 2015;5:14780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Narayanan G, Bharathidevi SR, Vuyyuru H, Muthuvel B, Konerirajapuram Natrajan S. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells. PLoS ONE. 2013;8(9): e71982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weekley CM, He C. Developing drugs targeting transition metal homeostasis. Curr Opin Chem Biol. 2017;37:26–32.

    Article  CAS  PubMed  Google Scholar 

  56. Sammons S, Brady D, Vahdat L, Salama AK. Copper suppression as cancer therapy: the rationale for copper chelating agents in BRAF(V600) mutated melanoma. Melanoma Manag. 2016;3(3):207–16.

    Article  PubMed  PubMed Central  Google Scholar 

  57. EASL Clinical Practice Guidelines. Wilson’s disease. J Hepatol. 2012;56(3):671–85.

    Google Scholar 

  58. Wadhwa S, Mumper RJ. D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett. 2013;337(1):8–21.

    Article  CAS  PubMed  Google Scholar 

  59. Kim KK, Abelman S, Yano N, Ribeiro JR, Singh RK, Tipping M, et al. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells. Sci Rep. 2015;5:14296.

    Article  PubMed  Google Scholar 

  60. Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG, Kelly RA, et al. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science. 2010;327(5963):331–4.

    Article  CAS  PubMed  Google Scholar 

  61. Baldari S, Di Rocco G, Heffern MC, Su TA, Chang CJ, Toietta G. Effects of copper chelation on BRAF(V600E) positive colon carcinoma cells. Cancers (Basel). 2019;11(5):659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gartner EM, Griffith KA, Pan Q, Brewer GJ, Henja GF, Merajver SD, et al. A pilot trial of the anti-angiogenic copper lowering agent tetrathiomolybdate in combination with irinotecan, 5-flurouracil, and leucovorin for metastatic colorectal cancer. Invest New Drugs. 2009;27(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  63. Crowe A, Jackaman C, Beddoes KM, Ricciardo B, Nelson DJ. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS ONE. 2013;8(8): e73684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshiji H, Yoshii J, Kuriyama S, Ikenaka Y, Noguchi R, Yanase K, et al. Combination of copper-chelating agent, trientine, and methotrexate attenuates colorectal carcinoma development and angiogenesis in mice. Oncol Rep. 2005;14(1):213–8.

    CAS  PubMed  Google Scholar 

  65. Fatfat M, Merhi RA, Rahal O, Stoyanovsky DA, Zaki A, Haidar H, et al. Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer. 2014;14:527.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yu N, Zhu H, Yang Y, Tao Y, Tan F, Pei Q, et al. Combination of Fe/Cu -chelators and docosahexaenoic acid: an exploration for the treatment of colorectal cancer. Oncotarget. 2017;8(31):51478–91.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang Z, Wang H, Yan M, Wang H, Zhang C. Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review). Mol Med Rep. 2017;15(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  68. Lewison EF. Spontaneous regression of breast cancer. Prog Clin Biol Res. 1977;12:47–53.

    CAS  PubMed  Google Scholar 

  69. Li H, Wang J, Wu C, Wang L, Chen ZS, Cui W. The combination of disulfiram and copper for cancer treatment. Drug Discov Today. 2020;25(6):1099–108.

    Article  CAS  PubMed  Google Scholar 

  70. Li Y, Wang LH, Zhang HT, Wang YT, Liu S, Zhou WL, et al. Disulfiram combined with copper inhibits metastasis and epithelial-mesenchymal transition in hepatocellular carcinoma through the NF-κB and TGF-β pathways. J Cell Mol Med. 2018;22(1):439–51.

    Article  CAS  PubMed  Google Scholar 

  71. Hu Y, Qian Y, Wei J, Jin T, Kong X, Cao H, et al. The disulfiram/copper complex induces autophagic cell death in colorectal cancer by targeting ULK1. Front Pharmacol. 2021;12: 752825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, et al. Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents. Front Mol Biosci. 2021;8: 741316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oliveri V. Selective targeting of cancer cells by copper ionophores: an overview. Front Mol Biosci. 2022;9: 841814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE. Anticancer activity of the antibiotic clioquinol. Cancer Res. 2005;65(8):3389–95.

    Article  CAS  PubMed  Google Scholar 

  75. Cater MA, Haupt Y. Clioquinol induces cytoplasmic clearance of the X-linked inhibitor of apoptosis protein (XIAP): therapeutic indication for prostate cancer. Biochem J. 2011;436(2):481–91.

    Article  CAS  PubMed  Google Scholar 

  76. Jiang H, Taggart JE, Zhang X, Benbrook DM, Lind SE, Ding WQ. Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline). Cancer Lett. 2011;312(1):11–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Steinbrueck A, Sedgwick AC, Vargas-Zúñiga GI, He XP, Tian H, Sessler JL. Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chem Soc Rev. 2020;49(12):3726–47.

    Article  CAS  PubMed  Google Scholar 

  78. Donnelly PS, Liddell JR, Lim S, Paterson BM, Cater MA, Savva MS, et al. An impaired mitochondrial electron transport chain increases retention of the hypoxia imaging agent diacetylbis(4-methylthiosemicarbazonato)copperII. Proc Natl Acad Sci U S A. 2012;109(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  79. Cater MA, Pearson HB, Wolyniec K, Klaver P, Bilandzic M, Paterson BM, et al. Increasing intracellular bioavailable copper selectively targets prostate cancer cells. ACS Chem Biol. 2013;8(7):1621–31.

    Article  CAS  PubMed  Google Scholar 

  80. Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 2021;15(12):3527–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in copper complexes as anticancer agents. Chem Rev. 2014;114(1):815–62.

    Article  CAS  PubMed  Google Scholar 

  82. Chen X, Dou QP, Liu J, Tang D. Targeting ubiquitin-proteasome system with copper complexes for cancer therapy. Front Mol Biosci. 2021;8: 649151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107(12):4907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu N, Liu C, Li X, Liao S, Song W, Yang C, et al. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases. Sci Rep. 2014;4:5240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen X, Zhang X, Chen J, Yang Q, Yang L, Xu D, et al. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur J Pharmacol. 2017;815:147–55.

    Article  CAS  PubMed  Google Scholar 

  86. Milacic V, Chen D, Giovagnini L, Diez A, Fregona D, Dou QP. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity. Toxicol Appl Pharmacol. 2008;231(1):24–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang H, Wu JS, Peng F. Potent anticancer activity of pyrrolidine dithiocarbamate-copper complex against cisplatin-resistant neuroblastoma cells. Anticancer Drugs. 2008;19(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  88. Khan R, Khan H, Abdullah Y, Dou QP. Feasibility of repurposing clioquinol for cancer therapy. Recent Pat Anticancer Drug Discov. 2020;15(1):14–31.

    Article  CAS  PubMed  Google Scholar 

  89. Wehbe M, Malhotra AK, Anantha M, Lo C, Dragowska WH, Dos Santos N, et al. Development of a copper-clioquinol formulation suitable for intravenous use. Drug Deliv Transl Res. 2018;8(1):239–51.

    Article  CAS  PubMed  Google Scholar 

  90. Shi X, Chen Z, Wang Y, Guo Z, Wang X. Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalton Trans. 2018;47(14):5049–54.

    Article  CAS  PubMed  Google Scholar 

  91. Wang T, Liu Y, Fu Y, Huang T, Yang Y, Li S, et al. Antiproliferative activity of di-2-pyridylhydrazone dithiocarbamate acetate partly involved in p53 mediated apoptosis and autophagy. Int J Oncol. 2017;51(6):1909–19.

    Article  CAS  PubMed  Google Scholar 

  92. Schroeder SM, Matsukuma KE, Medici V. Wilson disease and the differential diagnosis of its hepatic manifestations: a narrative review of clinical, laboratory, and liver histological features. Ann Transl Med. 2021;9(17):1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7(1):378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Figure was created by Figdraw (www.figdraw.com). We thank Home for Researchers editorial team (www.home-forresearchers.com) for language editing service.

Funding

This work was supported by the Graduate Research-Innovation Project in Jiangsu province [No.SJCX21_1644], the Academic Science and Technology Innovation Fund for College Students [No. 202011117056Y], the Social Development-Health Care Project of Yangzhou, Jiangsu Province [No. YZ2021075], and High-level talent “six one projects” top talent scientific research project of Jiangsu Province [No. LGY2019034], the Graduate Research- Innovation Project in Jiangsu province (SJCX22_1816) Social development project of key R & D plan of Jiangsu Provincial Department of science and technology (BE2022773). The funding bodies had no role in the design of the study; in the collection, analysis, and interpretation of the data; and in the writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Dong Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Sha, G., Zhang, W. et al. The huge potential of targeting copper status in the treatment of colorectal cancer. Clin Transl Oncol 25, 1977–1990 (2023). https://doi.org/10.1007/s12094-023-03107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03107-7

Keywords

Navigation