Skip to main content

Advertisement

Log in

Prediction model of colorectal cancer (CRC) lymph node metastasis based on intestinal bacteria

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Lymph node metastasis is the main metastatic mode of CRC. Lymph node metastasis affects patient prognosis.

Objective

To screen differential intestinal bacteria for CRC lymph node metastasis and construct a prediction model.

Methods

First, fecal samples of 119 CRC patients with lymph node metastasis and 110 CRC patients without lymph node metastasis were included for the detection of intestinal bacterial 16S rRNA. Then, bioinformatics analysis of the sequencing data was performed. Community structure and composition analysis, difference analysis, and intragroup and intergroup correlation analysis were conducted between the two groups. Finally, six machine learning models were used to construct a prediction model for CRC lymph node metastasis.

Results

The community richness and the community diversity at the genus level of the two groups were basically consistent. A total of 12 differential bacteria (Agathobacter, Catenibacterium, norank_f__Oscillospiraceae, Lachnospiraceae_FCS020_group, Lachnospiraceae_UCG-004, etc.) were screened at the genus level. Differential bacteria, such as Agathobacter, Catenibacterium, norank_f__Oscillospiraceae, and Lachnospiraceae_FCS020_group, were more associated with no lymph node metastasis in CRC. In the discovery set, the RF model had the highest prediction accuracy (AUC = 1.00, 98.89% correct, specificity = 55.21%, sensitivity = 55.95%). In the test set, SVM model had the highest prediction accuracy (AUC = 0.73, 72.92% correct, specificity = 69.23%, sensitivity = 88.89%). Lachnospiraceae_FCS020_group was the most important variable in the RF model. Lachnospiraceae_UCG − 004 was the most important variable in the SVM model.

Conclusion

CRC lymph node metastasis is closely related to intestinal bacteria. The prediction model based on intestinal bacteria can provide a new evaluation method for CRC lymph node metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated for this study can be accessed from the NCBI Sequence Read Archive (SRA) database under the accession number PRJNA911321 and PRJNA911611.

Abbreviations

PCC:

Pearson correlation coefficient

LDA:

Linear discriminant analysis

LR:

Logistic regression

RF:

Random forest

NN:

Neural network

GBDT:

Gradient boosted decision tree

SVM:

Support vector machine

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Nanduri LK, Hissa B, Weitz J, Schölch S, Bork U. The prognostic role of circulating tumor cells in colorectal cancer. Expert Rev Anticancer Ther. 2019;19(12):1077–88.

    Article  CAS  PubMed  Google Scholar 

  3. Chen K, Collins G, Wang H, Toh JWT. Pathological features and prognostication in colorectal cancer. Curr Oncol. 2021;28(6):5356–83.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen K, Wang H, Collins G, Hollands E, Law IYJ, Toh JWT. Current perspectives on the importance of pathological features in prognostication and guidance of adjuvant chemotherapy in colon cancer. Curr Oncol. 2022;29(3):1370–89.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang C, Zhang L, Xu T, Xue R, Yu L, Zhu Y, et al. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat Commun. 2020;11(1):1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakai N, Yamaguchi T, Kinugasa Y, Shiomi A, Kagawa H, Yamakawa Y, et al. Diagnostic value of computed tomography (CT) and positron emission tomography (PET) for paraaortic lymph node metastasis from left-sided colon and rectal cancer. Asian J Surg. 2020;43(6):676–82.

    Article  PubMed  Google Scholar 

  7. Liberale G, Bourgeois P, Larsimont D, Moreau M, Donckier V, Ishizawa T. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol. 2017;43(9):1656–67.

    Article  CAS  PubMed  Google Scholar 

  8. Kubo H, Hanaoka K, Kuriki Y, Komatsu T, Ueno T, Kojima R, et al. Rapid detection of metastatic lymph nodes of colorectal cancer with a gamma-glutamyl transpeptidase-activatable fluorescence probe. Sci Rep. 2018;8(1):17781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yeung TM, Wang LM, Colling R, Kraus R, Cahill R, Hompes R, et al. Intraoperative identification and analysis of lymph nodes at laparoscopic colorectal cancer surgery using fluorescence imaging combined with rapid OSNA pathological assessment. Surg Endosc. 2018;32(2):1073–6.

    Article  PubMed  Google Scholar 

  10. Le Voyer TE, Sigurdson ER, Hanlon AL, Mayer RJ, Macdonald JS, Catalano PJ, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol. 2003;21(15):2912–9.

    Article  PubMed  Google Scholar 

  11. Johnson PM, Porter GA, Ricciardi R, Baxter NN. Increasing negative lymph node count is independently associated with improved long-term survival in stage IIIB and IIIC colon cancer. J Clin Oncol. 2006;24(22):3570–5.

    Article  PubMed  Google Scholar 

  12. Ahmad A, Reha J, Saied A, Espat NJ, Somasundar P, Katz SC. Association of primary tumor lymph node ratio with burden of liver metastases and survival in stage IV colorectal cancer. Hepatobiliary Surg Nutr. 2017;6(3):154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Janney A, Powrie F, Mann EH. Host-microbiota maladaptation in colorectal cancer. Nature. 2020;585(7826):509–17.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Z, Chen J, Yao H, Hu H. Fusobacterium and colorectal cancer. Front Oncol. 2018;8:371.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2):322–40.

    Article  CAS  PubMed  Google Scholar 

  16. Francescangeli F, De Angelis ML, Zeuner A. Dietary factors in the control of gut homeostasis, intestinal stem cells, and colorectal cancer. Nutrients. 2019;11(12):2936.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Zhang L, Zheng S, Li M, Xu C, Jia D, et al. Fusobacterium nucleatum promotes colorectal cancer cells adhesion to endothelial cells and facilitates extravasation and metastasis by inducing ALPK1/NF-κB/ICAM1 axis. Gut Microbes. 2022;14(1):2038852.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang CC, Shen MH, Chen SK, Yang SH, Liu CY, Guo JW, et al. Gut butyrate-producing organisms correlate to Placenta Specific 8 protein: Importance to colorectal cancer progression. J Adv Res. 2020;22:7–20.

    Article  CAS  PubMed  Google Scholar 

  19. Rinaldi E, Consonni A, Guidesi E, Elli M, Mantegazza R, Baggi F. Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis? Ann N Y Acad Sci. 2018;1413(1):49–58.

    Article  PubMed  Google Scholar 

  20. Murota Y, Jobin C. Bacteria break barrier to promote metastasis. Cancer Cell. 2021;39(5):598–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen S, Zhang L, Li M, Zhang Y, Sun M, Wang L, et al. Fusobacterium nucleatum reduces METTL3-mediated m(6)A modification and contributes to colorectal cancer metastasis. Nat Commun. 2022;13(1):1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell. 2021;39(5):708-724.e711.

    Article  CAS  PubMed  Google Scholar 

  23. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lavelle A, Nancey S, Reimund JM, Laharie D, Marteau P, Treton X, et al. Fecal microbiota and bile acids in IBD patients undergoing screening for colorectal cancer. Gut Microbes. 2022;14(1):2078620.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24(7):523–4.

    Article  CAS  PubMed  Google Scholar 

  26. DeDecker L, Coppedge B, Avelar-Barragan J, Karnes W, Whiteson K. Microbiome distinctions between the CRC carcinogenic pathways. Gut Microbes. 2021;13(1):1854641.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Surana NK, Kasper DL. Moving beyond microbiome-wide associations to causal microbe identification. Nature. 2017;552(7684):244–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu HM, Huang HL, Liu YD, Zhu JQ, Zhou YL, Chen HT, et al. Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile. BMC Microbiol. 2021;21(1):279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang J, Wei H, Zhou Y, Szeto CH, Li C, Lin Y, et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology. 2022;162(1):135-149.e132.

    Article  CAS  PubMed  Google Scholar 

  30. Reis SAD, da Conceição LL, Peluzio M. Intestinal microbiota and colorectal cancer: changes in the intestinal microenvironment and their relation to the disease. J Med Microbiol. 2019;68(10):1391–407.

    Article  PubMed  Google Scholar 

  31. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Si H, Yang Q, Hu H, Ding C, Wang H, Lin X. Colorectal cancer occurrence and treatment based on changes in intestinal flora. Semin Cancer Biol. 2021;70:3–10.

    Article  CAS  PubMed  Google Scholar 

  33. Li Q, Hu W, Liu WX, Zhao LY, Huang D, Liu XD, et al. Streptococcus thermophilus Inhibits colorectal tumorigenesis through secreting β-galactosidase. Gastroenterology. 2021;160(4):1179-1193.e1114.

    Article  CAS  PubMed  Google Scholar 

  34. Montalban-Arques A, Katkeviciute E, Busenhart P, Bircher A, Wirbel J, Zeller G, et al. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe. 2021;29(10):1573-1588.e1577.

    Article  CAS  PubMed  Google Scholar 

  35. Kudo SE, Ichimasa K, Villard B, Mori Y, Misawa M, Saito S, et al. Artificial intelligence system to determine risk of T1 colorectal cancer metastasis to lymph node. Gastroenterology. 2021;160(4):1075-1084.e1072.

    Article  CAS  PubMed  Google Scholar 

  36. Vellinga TT, Kranenburg O, Frenkel N, Ubink I, Marvin D, Govaert K, et al. Lymphangiogenic gene expression is associated with lymph node recurrence and poor prognosis after partial hepatectomy for colorectal liver metastasis. Ann Surg. 2017;266(5):765–71.

    Article  PubMed  Google Scholar 

  37. Wang XC, Luo LM, Huang TS, Feng LF. SOAT1 is a new prognostic factor of colorectal cancer. Ir J Med Sci. 2021;191:1549–54.

    Article  PubMed  Google Scholar 

  38. Yang Y, Misra BB, Liang L, Bi D, Weng W, Wu W, et al. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics. 2019;9(14):4101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, et al. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. MBio. 2020. https://doi.org/10.1128/mBio.03186-19.

    Article  PubMed  PubMed Central  Google Scholar 

  40. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  41. Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the database available to us for this study. We thank the patients and volunteers for their contributions to sample collection. All methods were performed in accordance with the relevant guidelines and regulations.

Funding

This work was supported by the Key Research and Development Project of Zhejiang Province (2022C03026) and Zhejiang Medical and Health Technology Project (2022KY1220).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conception and design of the study. Conceived and drafted the manuscript: WW and HS. Wrote the paper: WY and ZJ. Recruited the sample and analyzed the data: WY, ZJ and JY. Drew figures: WX, SY and FZ. All authors read and approved the paper.

Corresponding authors

Correspondence to Wu Wei or Han Shuwen.

Ethics declarations

Competing interests

The authors declare that no potential conflicts of interest exist.

Ethics approval and consent to participate

All subjects signed informed consent according to the guidelines approved by the Ethics Committee of Huzhou Central Hospital.

Informed consent

Informed consent was obtained from all the participants. All methods were carried out in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1. The flowchart for recruiting participants. (TIF 884 KB)

Supplementary Figure 2. Violin diagram of 12 different bacteria. (TIF 952 KB)

12094_2022_3061_MOESM3_ESM.tif

Supplementary Figure 3. Function prediction based on intestinal bacteria. A: Histogram of COG functional classification statistics. The abscissa represents the relative abundance, and the ordinate represents groups. B: COG functional classification statistical box diagram. The abscissa represents the COG secondary function number, and the ordinate represents the functional abundance. (TIF 936 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yinhang, W., Jing, Z., Jie, Z. et al. Prediction model of colorectal cancer (CRC) lymph node metastasis based on intestinal bacteria. Clin Transl Oncol 25, 1661–1672 (2023). https://doi.org/10.1007/s12094-022-03061-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03061-w

Keywords

Navigation