Skip to main content
Log in

A novel regulator in cancer initiation and progression: long noncoding RNA SHNG9

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer has become the most common life-threatening disease in the world. Cancers presenting with advanced stages and metastasis show poor prognosis, even with the application of radiotherapy, surgery, chemotherapy and immunotherapy. It is of great importance to explore novel, efficient biomarkers and their internal mechanisms. Recently, it has been reported that long noncoding RNAs (lncRNAs) play important roles in tumor initiation and progression, influencing downstream mRNAs by interacting with miRNAs and functioning as sponges in competing endogenous RNA (ceRNA) networks. Small nucleolar RNA host gene 9 (SNHG9) binds with miRNAs, inducing miRNA downregulation. The downregulated miRNAs enhance downstream target gene expression via ceRNA networks. Dysregulation of SNHG9 is widely observed in tumors and is associated with clinical prognosis features, which makes it a valuable target for cancer biomarkers and therapeutics. Dysregulated SNHG9 in tumor cells also functions in tumor proliferation, colony formation, migration, invasion and inhibition of apoptosis and tumor cell metabolism. This systematic review of SNHG9 in tumors provides new perspectives on cancer diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Not applicable.

References

  1. Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther. 2022;7(1):376.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heintzman DR, Fisher EL, Rathmell JC. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol Immunol. 2022;19(3):316–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  4. Luu M, Visekruna A. Targeting metabolic rewiring might decrease spread of tumor cells: Mitochondrial tRNA modifications promote cancer metastasis. Signal Transduct Target Ther. 2022;7(1):360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou W. Immune regulation in the tumor microenvironment and its relevance in cancer therapy. Cell Mol Immunol. 2022;19(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  6. Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer. 2022;21(1):208.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xue C, Chen C, Gu X, Li L. Progress and assessment of lncRNA DGCR5 in malignant phenotype and immune infiltration of human cancers. Am J Cancer Res. 2021;11(1):1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther. 2021;6(1):400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu M, Ding Q, Lin Z, Chen X, Chen S, Zhu Y. New insights of epigenetics in vascular and cellular senescence. J Transl Int Med. 2021;9(4):239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–32.

    PubMed  Google Scholar 

  14. Cisneros-Villanueva M, Hidalgo-Pérez L, Cedro-Tanda A, Peña-Luna M, Mancera-Rodríguez MA, Hurtado-Cordova E, et al. LINC00460 is a dual biomarker that acts as a predictor for increased prognosis in basal-like breast cancer and potentially regulates immunogenic and differentiation-related genes. Front Oncol. 2021;2021:11628027.

    Google Scholar 

  15. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palazzo AF, Koonin EV. Functional long non-coding RNAs evolve from junk transcripts. Cell. 2020;183(5):1151–61.

    Article  CAS  PubMed  Google Scholar 

  17. Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, et al. Role of main RNA modifications in cancer: N(6):-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther. 2022;7(1):142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romero-Barrios N, Legascue MF, Benhamed M, Ariel F, Crespi M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 2018;46(5):2169–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements. Nature. 2011;470(7333):284–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao Y, Liu Y, Lin L, Huang Q, He W, Zhang S, et al. The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol Cancer. 2018;17(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maass PG, Luft FC, Bähring S. Long non-coding RNA in health and disease. J Mol Med (Berl). 2014;92(4):337–46.

    Article  CAS  PubMed  Google Scholar 

  22. Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol. 2022. https://doi.org/10.1038/s41580-022-00534-2.

    Article  PubMed  Google Scholar 

  23. Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23(6):389–406.

    Article  CAS  PubMed  Google Scholar 

  24. Tang Y, He Y, Zhang P, Wang J, Fan C, Yang L, et al. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis. Mol Cancer. 2018;17(1):77.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Gan Y, Liu J, Li J, Zhou Z, Tian R, et al. Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer. Signal Transduct Target Ther. 2022;7(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, et al. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol. 2021;14(1):169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018;24(3):257–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin C, Yang L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28(4):287–301.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol. 2013;10:637.

    Google Scholar 

  30. Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front Oncol. 2020;10:10389.

    Article  Google Scholar 

  31. Zhang B, Li C, Sun Z. Long non-coding RNA LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9 are novel prognostic markers for pancreatic cancer. Am J Transl Res. 2018;10(8):2648–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li RH, Tian T, Ge QW, He XY, Shi CY, Li JH, et al. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling. Cell Res. 2021;31(10):1088–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin Y, Holden V, Dhilipkannah P, Deepak J, Todd NW, Jiang F. A Non-coding RNA landscape of bronchial epitheliums of lung cancer patients. Biomedicines. 2020;8:4.

    Article  Google Scholar 

  34. Wang L, Huang Q, Lin Q, Chen L, Shi Q. Knockdown of long non-coding RNA small nucleolar RNA host gene 9 or hexokinase 2 both suppress endometrial cancer cell proliferation and glycolysis. J Obstet Gynaecol Res. 2021;47(6):2196–203.

    Article  CAS  PubMed  Google Scholar 

  35. Wang CJ, Chao CR, Zhao WF, Liu HM, Feng JS, Cui YX. Long noncoding RNA SNHG9 facilitates growth of glioma stem-like cells via miR-326/SOX9 axis. J Gene Med. 2022;24(1): e3334.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Qin D, Jiang Z, Zhang J. SNHG9/miR-199a-5p/Wnt2 Axis regulates cell growth and aerobic glycolysis in glioblastoma. J Neuropathol Exp Neurol. 2019;78(10):939–48.

    Article  CAS  PubMed  Google Scholar 

  37. Kunadirek P, Pinjaroen N, Nookaew I, Tangkijvanich P, Chuaypen N. Transcriptomic analyses reveal long non-coding RNA in peripheral blood mononuclear cells as a novel biomarker for diagnosis and prognosis of hepatocellular carcinoma. Int J Mol Sci. 2022;23:14.

    Article  Google Scholar 

  38. Li C, Hu J, Hu X, Zhao C, Mo M, Zu X, et al. LncRNA SNHG9 is a prognostic biomarker and correlated with immune infiltrates in prostate cancer. Transl Androl Urol. 2021;10(1):215–26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen GY, Zhang ZS, Chen Y, Li Y. Long non-coding RNA SNHG9 inhibits ovarian cancer progression by sponging microRNA-214-5p. Oncol Lett. 2021;21(2):80.

    Article  PubMed  Google Scholar 

  40. Wen D, Liu WL, Lu ZW, Cao YM, Ji QH, Wei WJ. SNHG9, a papillary thyroid cancer cell exosome-enriched lncRNA, inhibits cell autophagy and promotes cell apoptosis of normal thyroid epithelial cell Nthy-ori-3 through YBOX3/P21 pathway. Front Oncol. 2021;2021:11647034.

    Google Scholar 

  41. Bai CJ, Gao T, Liu JY, Li S, Wang XY, Fan ZF. SNHG9/miR-214-5p/SOX4 feedback loop regulates osteosarcoma progression. Neoplasma. 2022;69(5):1175–84.

    Article  PubMed  Google Scholar 

  42. Ghafouri-Fard S, Taheri M. The expression profile and role of non-coding RNAs in obesity. Eur J Pharmacol. 2021;2021:892173809.

    Google Scholar 

  43. Zhang H, Li J, Shao W, Shen N. LncRNA SNHG9 is downregulated in osteoarthritis and inhibits chondrocyte apoptosis by downregulating miR-34a through methylation. BMC Musculoskelet Disord. 2020;21(1):511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun Y, Xiao Z, Chen Y, Xu D, Chen S. Susceptibility modules and genes in hypertrophic cardiomyopathy by WGCNA and ceRNA network analysis. Front Cell Dev Biol. 2021;2021:9822465.

    Google Scholar 

  45. Song Y, Li H, Ren X, Li H, Feng C. SNHG9, delivered by adipocyte-derived exosomes, alleviates inflammation and apoptosis of endothelial cells through suppressing TRADD expression. Eur J Pharmacol. 2020;2020:872172977.

    Google Scholar 

  46. Chaft JE, Shyr Y, Sepesi B, Forde PM. Preoperative and postoperative systemic therapy for operable non-small-cell lung cancer. J Clin Oncol. 2022;40(6):546–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu T, Ma Q, Li Y, Yu Q, Pan P, Zheng Y, et al. A small molecule inhibitor of the UBE2F-CRL5 axis induces apoptosis and radiosensitization in lung cancer. Signal Transduct Target Ther. 2022;7(1):354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian X, Wang R, Gu T, Ma F, Laster KV, Li X, et al. Costunolide is a dual inhibitor of MEK1 and AKT1/2 that overcomes osimertinib resistance in lung cancer. Mol Cancer. 2022;21(1):193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donington J, Schumacher L, Yanagawa J. Surgical issues for operable early-stage non-small-cell lung cancer. J Clin Oncol. 2022;40(6):530–8.

    Article  PubMed  Google Scholar 

  50. Higgins KA, Puri S, Gray JE. Systemic and radiation therapy approaches for locally advanced non-small-cell lung cancer. J Clin Oncol. 2022;40(6):576–85.

    Article  CAS  PubMed  Google Scholar 

  51. Wang R, Chen C, Kang W, Meng G. SNHG9 was upregulated in NSCLC and associated with DDP-resistance and poor prognosis of NSCLC patients. Am J Transl Res. 2020;12(8):4456–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao Y, Zhang W, Huo M, Wang P, Liu X, Wang Y, et al. XBP1 regulates the protumoral function of tumor-associated macrophages in human colorectal cancer. Signal Transduct Target Ther. 2021;6(1):357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Liu X, Wang Y, Lai S, Wang Z, Yang Y, et al. The m(6): A demethylase ALKBH5-mediated upregulation of DDIT4-AS1 maintains pancreatic cancer stemness and suppresses chemosensitivity by activating the mTOR pathway. Mol Cancer. 2022;21(1):174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nielsen SR, Strøbech JE, Horton ER, Jackstadt R, Laitala A, Bravo MC, et al. Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nat Commun. 2021;12(1):3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma. Hepatology. 2022. https://doi.org/10.1002/hep.32740.

    Article  Google Scholar 

  56. Lee YT, Fujiwara N, Yang JD, Hoshida Y. Risk stratification and early detection biomarkers for precision HCC screening. Hepatology. 2022;2022:1475.

    Google Scholar 

  57. Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612:141–7.

    Article  CAS  PubMed  Google Scholar 

  58. Xue C, Zhao Y, Li G, Li L. Multi-omic analyses of the m(5): C regulator ALYREF reveal its essential roles in hepatocellular carcinoma. Front Oncol. 2021;2021:11633415.

    Google Scholar 

  59. Feng SG, Bhandari R, Ya L, Zhixuan B, Qiuhui P, Jiabei Z, et al. SNHG9 promotes hepatoblastoma tumorigenesis via miR-23a-5p/Wnt3a axis. J Cancer. 2021;12(20):6031–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ye S, Ni Y. lncRNA SNHG9 promotes cell proliferation, migration, and invasion in human hepatocellular carcinoma cells by increasing GSTP1 methylation, as revealed by CRISPR-dCas9. Front Mol Biosci. 2021;2021:8649976.

    Google Scholar 

  61. Dalerba P, Clarke MF. Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell. 2007;1(3):241–2.

    Article  CAS  PubMed  Google Scholar 

  62. Liguori M, Digifico E, Vacchini A, Avigni R, Colombo FS, Borroni EM, et al. The soluble glycoprotein NMB (GPNMB): produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol. 2021;18(3):711–22.

    Article  CAS  PubMed  Google Scholar 

  63. Gu Y, Wang Y, He L, Zhang J, Zhu X, Liu N, et al. Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 2021;20(1):132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  CAS  PubMed  Google Scholar 

  65. Wang D, Cao X, Han Y, Yu D. LncRNA SNHG9 is downregulated in non-small cell lung cancer and suppressed miR-21 through methylation to promote cell proliferation. Cancer Manag Res. 2020;2020:1279418.

    Google Scholar 

  66. Erdos E, Divoux A, Sandor K, Halasz L, Smith SR, Osborne TF. Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells. Genes Dev. 2022;36(9–10):566–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Peng S, Gao Y, Shi S, Zhao D, Cao H, Fu T, et al. LncRNA-AK137033 inhibits the osteogenic potential of adipose-derived stem cells in diabetic osteoporosis by regulating Wnt signaling pathway via DNA methylation. Cell Prolif. 2022;55(1): e13174.

    Article  CAS  PubMed  Google Scholar 

  68. Shao X, Qin J, Wan C, Cheng J, Wang L, Ai G, et al. ADSC exosomes mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p. Front Genet. 2021;2021:12679643.

    Google Scholar 

  69. Ren S, Xiong H, Chen J, Yang X, Liu Y, Guo J, et al. The whole profiling and competing endogenous RNA network analyses of noncoding RNAs in adipose-derived stem cells from diabetic, old, and young patients. Stem Cell Res Ther. 2021;12(1):313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen K, Xie S, Jin W. Crucial lncRNAs associated with adipocyte differentiation from human adipose-derived stem cells based on co-expression and ceRNA network analyses. PeerJ. 2019;7:7544.

    Article  Google Scholar 

  71. Wang S, Zhang Y, Cai Q, Ma M, Jin LY, Weng M, et al. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol Cancer. 2019;18(1):145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shen S, Yao T, Xu Y, Zhang D, Fan S, Ma J. CircECE1 activates energy metabolism in osteosarcoma by stabilizing c-Myc. Mol Cancer. 2020;19(1):151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7(1):305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li M, Hao B, Zhang M, Reiter RJ, Lin S, Zheng T, et al. Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development. Signal Transduct Target Ther. 2021;6(1):330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khan F, Khan H, Khan A, Yamasaki M, Moustaid-Moussa N, Al-Harrasi A, et al. Autophagy in adipogenesis: molecular mechanisms and regulation by bioactive compounds. Biomed Pharmacother. 2022;2022:155113715.

    Google Scholar 

  76. Lin Z, Wu Y, Xu Y, Li G, Li Z, Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer. 2022;21(1):179.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tu Z, Karnoub AE. Mesenchymal stem/stromal cells in breast cancer development and management. Semin Cancer Biol. 2022;86(Pt 2):81–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Henan Medical Science and Technology Joint Building Program (LHGJ20200387 and LHGJ20210308).

Author information

Authors and Affiliations

Authors

Contributions

SS and YZ designed the work, MZ wrote this manuscript and made figures. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yang Zhang or Shen Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Zhang, Y. & Shen, S. A novel regulator in cancer initiation and progression: long noncoding RNA SHNG9. Clin Transl Oncol 25, 1512–1521 (2023). https://doi.org/10.1007/s12094-022-03060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03060-x

Keywords

Navigation