Skip to main content

Advertisement

Log in

PARs in the inflammation-cancer transformation of CRC

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the common malignancies with a global trend of increasing incidence and mortality. There is an urgent need to identify new predictive markers and therapeutic targets for the treatment of CRC. Protease-activated receptors (PARs) are a class of G-protein-coupled receptors, with currently identified subtypes including PAR1, PAR2, PAR3 and PAR4. Increasingly, studies suggest that PARs play an important role in the growth and metastasis of CRC. By targeting multiple signaling pathways may contribute to the pathogenesis of CRC. In this review, we first describe recent studies on the role of PARs in CRC inflammation-cancer transformation, focusing on the important role of PARs in signaling pathways associated with inflammation-cancer transformation, and summarize the progress of research on PARs-targeted drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Sinicrope FA. Lynch syndrome-associated colorectal cancer. N Engl J Med. 2018;379(8):764–73. https://doi.org/10.1056/NEJMcp1714533.

    Article  CAS  PubMed  Google Scholar 

  3. Chen H, Zheng X, Zong X, Li Z, Li N, Hur J, et al. Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut. 2021;70(6):1147–54. https://doi.org/10.1136/gutjnl-2020-321661.

    Article  CAS  PubMed  Google Scholar 

  4. Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7(2):149–56. https://doi.org/10.1016/S1470-2045(06)70577-0.

    Article  CAS  PubMed  Google Scholar 

  5. Nadeem MS, Kumar V, Al-Abbasi FA, Kamal MA, Anwar F. Risk of colorectal cancer in inflammatory bowel diseases. Semin Cancer Biol. 2020;64:51–60. https://doi.org/10.1016/j.semcancer.2019.05.001.

    Article  PubMed  Google Scholar 

  6. Castaño-Milla C, Chaparro M, Gisbert JP. Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis. Aliment Pharmacol Ther. 2014;39(7):645–59. https://doi.org/10.1111/apt.12651. (PMID: 24612141).

    Article  PubMed  Google Scholar 

  7. Canavan C, Abrams KR, Mayberry J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther. 2006;23(8):1097–104. https://doi.org/10.1111/j.1365-2036.2006.02854.

    Article  CAS  PubMed  Google Scholar 

  8. Olén O, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, et al. Colorectal cancer in Crohn’s disease: a Scandinavian population-based cohort study. Lancet Gastroenterol Hepatol. 2020;5(5):475–84. https://doi.org/10.1016/S2468-1253(20)30005-4.

    Article  PubMed  Google Scholar 

  9. Frigerio S, Lartey DA, D’Haens GR, Grootjans J. The role of the immune system in IBD-associated colorectal cancer: from pro to anti-tumorigenic mechanisms. Int J Mol Sci. 2021;22(23):12739. https://doi.org/10.3390/ijms222312739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Itzkowitz SH, Yio X. Inflammation and cancer IV Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287(1):G7-17. https://doi.org/10.1152/ajpgi.00079.2004.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng W, Wu J, Peng Y, Sun J, Cheng P, Huang Q. Tumor-associated neutrophils in colorectal cancer development, progression and immunotherapy. Cancers (Basel). 2022;14(19):4755. https://doi.org/10.3390/cancers14194755.

    Article  CAS  PubMed  Google Scholar 

  12. Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med. 2015;372(15):1441–52. https://doi.org/10.1056/NEJMra1403718.

    Article  CAS  PubMed  Google Scholar 

  13. Ke Z, Wang C, Wu T, Wang W, Yang Y, Dai Y. PAR2 deficiency enhances myeloid cell-mediated immunosuppression and promotes colitis-associated tumorigenesis. Cancer Lett. 2020;469:437–46. https://doi.org/10.1016/j.canlet.2019.11.015.

    Article  CAS  PubMed  Google Scholar 

  14. Motta JP, Palese S, Giorgio C, Chapman K, Denadai-Souza A, Rousset P, et al. Increased mucosal thrombin is associated with crohn’s disease and causes inflammatory damage through protease-activated receptors activation. J Crohns Colitis. 2021;15(5):787–99. https://doi.org/10.1093/ecco-jcc/jjaa229.

    Article  PubMed  Google Scholar 

  15. Dabek M, Ferrier L, Roka R, Gecse K, Annahazi A, Moreau J, et al. Luminal cathepsin g and protease-activated receptor 4: a duet involved in alterations of the colonic epithelial barrier in ulcerative colitis. Am J Pathol. 2009;175(1):207–14. https://doi.org/10.2353/ajpath.2009.080986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Fang Q, Ma Y, Zou S, Liu Q, Wang H. Protease activated receptor 2 mediates tryptase-induced cell migration through MYO10 in colorectal cancer. Am J Cancer Res. 2019;9(9):1995–2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hua Q, Sun Z, Liu Y, Shen X, Zhao W, Zhu X, et al. KLK8 promotes the proliferation and metastasis of colorectal cancer via the activation of EMT associated with PAR1. Cell Death Dis. 2021;12(10):860. https://doi.org/10.1038/s41419-021-04149-x.PMID:34552064;PMCID:PMC8458432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu D, Tang L, Zhuang Y, Zhao P. miR-17-3P regulates the proliferation and survival of colon cancer cells by targeting Par4. Mol Med Rep. 2018;17(1):618–23. https://doi.org/10.3892/mmr.2017.7863.

    Article  CAS  PubMed  Google Scholar 

  19. Kawaguchi M, Yamamoto K, Kataoka H, Izumi A, Yamashita F, Kiwaki T, et al. Protease-activated receptor-2 accelerates intestinal tumor formation through activation of nuclear factor-κB signaling and tumor angiogenesis in ApcMin/+ mice. Cancer Sci. 2020;111(4):1193–202. https://doi.org/10.1111/cas.14335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirota CL, Moreau F, Iablokov V, Dicay M, Renaux B, Hollenberg MD, et al. Epidermal growth factor receptor transactivation is required for proteinase-activated receptor-2-induced COX-2 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2012;303(1):G111–9. https://doi.org/10.1152/ajpgi.00358.2011.

    Article  CAS  PubMed  Google Scholar 

  21. Chandrabalan A, Ramachandran R. Molecular mechanisms regulating proteinase-activated receptors (PARs). FEBS J. 2021;288(8):2697–726. https://doi.org/10.1111/febs.15829.

    Article  CAS  PubMed  Google Scholar 

  22. Hollenberg MD, Compton SJ. International union of pharmacology XXVIII. Proteinase-activated receptors. Pharmacol Rev. 2002;54(2):203–17. https://doi.org/10.1124/pr.54.2.203.

    Article  CAS  PubMed  Google Scholar 

  23. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinaseactivated receptors. Pharmacol Rev. 2001;53:245–82.

    CAS  PubMed  Google Scholar 

  24. Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol. 2020;55(2):111–65. https://doi.org/10.1080/10409238.2020.1742090.

    Article  CAS  PubMed  Google Scholar 

  25. Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-activated receptors in the intestine: focus on inflammation and cancer. Front Endocrinol (Lausanne). 2019;10:717. https://doi.org/10.3389/fendo.2019.00717.

    Article  PubMed  Google Scholar 

  26. Mulè F, Pizzuti R, Capparelli A, Vergnolle N. Evidence for the presence of functional protease activated receptor 4 (PAR4) in the rat colon. Gut. 2004;53(2):229–34. https://doi.org/10.1136/gut.2003.021899.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jacenik D, Fichna J, Małecka-Wojciesko E, Mokrowiecka A. Protease-activated receptors—key regulators of inflammatory bowel diseases progression. J Inflamm Res. 2021;14:7487–97. https://doi.org/10.2147/JIR.S335502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saeed MA, Ng GZ, Däbritz J, Wagner J, Judd L, Han JX, et al. Protease-activated receptor 1 plays a proinflammatory role in colitis by promoting Th17-related immunity. Inflamm Bowel Dis. 2017;23(4):593–602. https://doi.org/10.1097/MIB.0000000000001045.

    Article  PubMed  Google Scholar 

  29. Rolland-Fourcade C, Denadai-Souza A, Cirillo C, Lopez C, Jaramillo JO, Desormeaux C, et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut. 2017;66(10):1767–78. https://doi.org/10.1136/gutjnl-2016-312094.

    Article  CAS  PubMed  Google Scholar 

  30. Iablokov V, Hirota CL, Peplowski MA, Ramachandran R, Mihara K, Hollenberg MD, et al. Proteinase-activated receptor 2 (PAR2) decreases apoptosis in colonic epithelial cells. J Biol Chem. 2014;289(49):34366–77. https://doi.org/10.1074/jbc.M114.610485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev. 2023;103(1):717–85. https://doi.org/10.1152/physrev.00044.2021.

    Article  CAS  PubMed  Google Scholar 

  32. Samad F, Ruf W. Inflammation, obesity, and thrombosis. Blood. 2013;122(20):3415–22. https://doi.org/10.1182/blood-2013-05-427708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pawlinski R, Tencati M, Hampton CR, Shishido T, Bullard TA, Casey LM, et al. Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation. 2007;116(20):2298–306. https://doi.org/10.1161/CIRCULATIONAHA.107.692764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vossen CY, Hoffmeister M, Chang-Claude JC, Rosendaal FR, Brenner H. Clotting factor gene polymorphisms and colorectal cancer risk. J Clin Oncol. 2011;29(13):1722–7. https://doi.org/10.1200/JCO.2010.31.8873.

    Article  CAS  PubMed  Google Scholar 

  35. Turpin B, Miller W, Rosenfeldt L, Kombrinck K, Flick MJ, Steinbrecher KA, et al. Thrombin drives tumorigenesis in colitis-associated colon cancer. Cancer Res. 2014;74(11):3020–30. https://doi.org/10.1158/0008-5472.CAN-13-3276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Stang A, Schweickert PG, Lanman NA, Paul EN, Monia BP, et al. Thrombin signaling promotes pancreatic adenocarcinoma through PAR-1-dependent immune evasion. Cancer Res. 2019;79(13):3417–30. https://doi.org/10.1158/0008-5472.CAN-18-3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adams GN, Rosenfeldt L, Frederick M, Miller W, Waltz D, Kombrinck K, et al. Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Cancer Res. 2015;75(19):4235–43. https://doi.org/10.1158/0008-5472.CAN-15-0964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Monteleone G, Pallone F, Stolfi C. The dual role of inflammation in colon carcinogenesis. Int J Mol Sci. 2012;13(9):11071–84. https://doi.org/10.3390/ijms130911071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Simone V, Pallone F, Monteleone G, Stolfi C. Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology. 2013;2(12):e26617. https://doi.org/10.4161/onci.26617.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cantrell R, Palumbo JS. The thrombin-inflammation axis in cancer progression. Thromb Res. 2020;191(Suppl 1):S117–22. https://doi.org/10.1016/S0049-3848(20)30408-4.

    Article  CAS  PubMed  Google Scholar 

  41. Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018;180(6):782–98. https://doi.org/10.1111/bjh.15062.

    Article  PubMed  Google Scholar 

  42. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122(2):337–51. https://doi.org/10.1161/CIRCRESAHA.117.310795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cantrell R, Palumbo JS. Hemostasis and tumor immunity. Res Pract Thromb Haemost. 2022;6(4):e12728. https://doi.org/10.1002/rth2.12728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schweickert PG, Yang Y, White EE, Cresswell GM, Elzey BD, Ratliff TL, et al. Thrombin-PAR1 signaling in pancreatic cancer promotes an immunosuppressive microenvironment. J Thromb Haemost. 2021;19(1):161–72. https://doi.org/10.1111/jth.15115.

    Article  PubMed  Google Scholar 

  45. Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut. 1996;39(1):87–92. https://doi.org/10.1136/gut.39.1.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clapper ML, Cooper HS, Chang WC. Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta Pharmacol Sin. 2007;28(9):1450–9. https://doi.org/10.1111/j.1745-7254.2007.00695.

    Article  CAS  PubMed  Google Scholar 

  47. Latorre R, Hegron A, Peach CJ, Teng S, Tonello R, Retamal JS, et al. Mice expressing fluorescent PAR2 reveal that endocytosis mediates colonic inflammation and pain. Proc Natl Acad Sci U S A. 2022;119(6):e2112059119. https://doi.org/10.1073/pnas.2112059119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mulè F, Baffi MC, Cerra MC. Dual effect mediated by protease-activated receptors on the mechanical activity of rat colon. Br J Pharmacol. 2002;136(3):367–74. https://doi.org/10.1038/sj.bjp.0704746.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124(4):1853–67. https://doi.org/10.1172/JCI73531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15(2):91–102. https://doi.org/10.1016/j.ccr.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  51. Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 signaling pathway in colorectal cancer. Biomedicines. 2021;9(8):1016. https://doi.org/10.3390/biomedicines9081016.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shanshan H, Lan X, Xia L, Huang W, Meifang Z, Ling Y. Inhibition of protease-activated receptor-2 induces apoptosis in cervical cancer by inhibiting signal transducer and activator of transcription-3 signaling. J Int Med Res. 2019;47(3):1330–8. https://doi.org/10.1177/0300060518820440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pawar NR, Buzza MS, Antalis TM. Membrane-anchored serine proteases and protease-activated receptor-2-mediated signaling: co-conspirators in cancer progression. Cancer Res. 2019;79(2):301–10. https://doi.org/10.1158/0008-5472.CAN-18-1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res. 2018;67(10):801–12. https://doi.org/10.1007/s00011-018-1173-4.

    Article  CAS  PubMed  Google Scholar 

  55. Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of myeloid-derived suppressor cell in tumor immunotherapy. Biomark Res. 2021;9(1):77. https://doi.org/10.1186/s40364-021-00333-5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309–24. https://doi.org/10.1038/nri.2017.142.

    Article  CAS  PubMed  Google Scholar 

  57. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 2011;12(8):715–23. https://doi.org/10.1038/ni.2060.

    Article  CAS  PubMed  Google Scholar 

  58. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–96. https://doi.org/10.1016/j.cell.2004.07.013.

    Article  CAS  PubMed  Google Scholar 

  59. Koliaraki V, Pasparakis M, Kollias G. IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med. 2015;212(13):2235–51. https://doi.org/10.1084/jem.20150542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Friis S, Riis AH, Erichsen R, Baron JA, Sørensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based. Case-Control Study Ann Intern Med. 2015;163(5):347–55. https://doi.org/10.7326/M15-0039.

    Article  PubMed  Google Scholar 

  61. Zhang Z, Ghosh A, Connolly PJ, King P, Wilde T, Wang J, et al. Gut-restricted selective cyclooxygenase-2 (COX-2) inhibitors for chemoprevention of colorectal cancer. J Med Chem. 2021;64(15):11570–96. https://doi.org/10.1021/acs.jmedchem.1c00890.

    Article  CAS  PubMed  Google Scholar 

  62. Mizuno R, Kawada K, Sakai Y. Prostaglandin E2/EP signaling in the Tumor microenvironment of colorectal cancer. Int J Mol Sci. 2019;20(24):6254. https://doi.org/10.3390/ijms20246254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roberts PJ, Morgan K, Miller R, Hunter JO, Middleton SJ. Neuronal COX-2 expression in human myenteric plexus in active inflammatory bowel disease. Gut. 2001;48(4):468–72. https://doi.org/10.1136/gut.48.4.468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. https://doi.org/10.1146/annurev.pharmtox.38.1.97.

    Article  CAS  PubMed  Google Scholar 

  65. Aoki T, Narumiya S. Prostaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microenvironment. Inflamm Regen. 2017;37:4. https://doi.org/10.1186/s41232-017-0036-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature. 1997;386(6624):502–6. https://doi.org/10.1038/386502a0.

    Article  CAS  PubMed  Google Scholar 

  67. Bah A, Chen Z, Bush-Pelc LA, Mathews FS, Di Cera E. Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors PAR3 and PAR4. Proc Natl Acad Sci U S A. 2007;104(28):11603–8. https://doi.org/10.1073/pnas.0704409104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost. 2005;3(8):1800–14. https://doi.org/10.1111/j.1538-7836.2005.01377.

    Article  CAS  PubMed  Google Scholar 

  69. Dabek M, Ferrier L, Annahazi A, Bézirard V, Polizzi A, Cartier C, et al. Intracolonic infusion of fecal supernatants from ulcerative colitis patients triggers altered permeability and inflammation in mice: role of cathepsin G and protease-activated receptor-4. Inflamm Bowel Dis. 2011;17(6):1409–14. https://doi.org/10.1002/ibd.21454.

    Article  PubMed  Google Scholar 

  70. Yu G, Jiang P, Xiang Y, Zhang Y, Zhu Z, Zhang C, et al. Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer. PLoS ONE. 2015;10(4):e0122678. https://doi.org/10.1371/journal.pone.0122678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang H, Jiang P, Zhang C, Lee S, Wang W, Zou H. PAR4 overexpression promotes colorectal cancer cell proliferation and migration. Oncol Lett. 2018;16(5):5745–52. https://doi.org/10.3892/ol.2018.9407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Faruqi TR, Weiss EJ, Shapiro MJ, Huang W, Coughlin SR. Structure-function analysis of protease-activated receptor 4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function. J Biol Chem. 2000;275(26):19728–34. https://doi.org/10.1074/jbc.M909960199.

    Article  CAS  PubMed  Google Scholar 

  73. Mitrugno A, Tassi Yunga S, Sylman JL, Zilberman-Rudenko J, Shirai T, Hebert JF, et al. The role of coagulation and platelets in colon cancer-associated thrombosis. Am J Physiol Cell Physiol. 2019;316(2):C264–73. https://doi.org/10.1152/ajpcell.00367.2018.

    Article  CAS  PubMed  Google Scholar 

  74. Chan NC, Weitz JI. Antithrombotic agents. Circ Res. 2019;124(3):426–36. https://doi.org/10.1161/CIRCRESAHA.118.313155.

    Article  CAS  PubMed  Google Scholar 

  75. Piran S, Schulman S. Treatment of bleeding complications in patients on anticoagulant therapy. Blood. 2019;133(5):425–35. https://doi.org/10.1182/blood-2018-06-820746.

    Article  CAS  PubMed  Google Scholar 

  76. Fala L. Zontivity (Vorapaxar), first-in-class PAR-1 antagonist, receives FDA approval for risk reduction of heart attack, stroke, and cardiovascular death. Am Health Drug Benefits. 2015;8:148–51.

    PubMed  PubMed Central  Google Scholar 

  77. Hirano T, Hirayama D, Wagatsuma K, Yamakawa T, Yokoyama Y, Nakase H. Immunological mechanisms in inflammation-associated colon carcinogenesis. Int J Mol Sci. 2020;21(9):3062. https://doi.org/10.3390/ijms21093062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Serebruany VL, Kogushi M, Dastros-Pitei D, Flather M, Bhatt DL. The in-vitro effects of E5555, a protease-activated receptor (PAR)-1 antagonist, on platelet biomarkers in healthy volunteers and patients with coronary artery disease. Thromb Haemost. 2009;102(1):111–9. https://doi.org/10.1160/TH08-12-0805.

    Article  CAS  PubMed  Google Scholar 

  79. O’Donoghue ML, Bhatt DL, Wiviott SD, Goodman SG, Fitzgerald DJ, Angiolillo DJ, et al. Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes: the lessons from antagonizing the cellular effects of Thrombin-Acute Coronary Syndromes Trial. Circulation. 2011;123(17):1843–53. https://doi.org/10.1161/CIRCULATIONAHA.110.000786.

    Article  CAS  PubMed  Google Scholar 

  80. Yu X, Li S, Zhu X, Kong Y. Inhibitors of protease-activated receptor 4 (PAR4): a review of recent patents (2013–2021). Expert Opin Ther Pat. 2022;32(2):153–70. https://doi.org/10.1080/13543776.2022.2034786.

    Article  CAS  PubMed  Google Scholar 

  81. Wilson SJ, Ismat FA, Wang Z, Cerra M, Narayan H, Raftis J, et al. PAR4 (Protease-activated receptor 4) antagonism with BMS-986120 inhibits human ex vivo thrombus formation. Arterioscler Thromb Vasc Biol. 2018;38(2):448–56. https://doi.org/10.1161/ATVBAHA.117.310104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meah MN, Raftis J, Wilson SJ, Perera V, Garonzik SM, Murthy B, et al. Antithrombotic effects of combined PAR (protease-activated receptor)-4 antagonism and factor xa inhibition. Arterioscler Thromb Vasc Biol. 2020;40(11):2678–85. https://doi.org/10.1161/ATVBAHA.120.314960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McIntosh KA, Cunningham MR, Bushell T, Plevin R. The development of proteinase-activated receptor-2 modulators and the challenges involved. Biochem Soc Trans. 2020;48(6):2525–37. https://doi.org/10.1042/BST20200191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lohman RJ, Cotterell AJ, Suen J, Liu L, Do AT, Vesey DA, et al. Antagonism of protease-activated receptor 2 protects against experimental colitis. J Pharmacol Exp Ther. 2012;340(2):256–65. https://doi.org/10.1124/jpet.111.187062.

    Article  CAS  PubMed  Google Scholar 

  85. Suen JY, Cotterell A, Lohman RJ, Lim J, Han A, Yau MK, et al. Pathway-selective antagonism of proteinase activated receptor 2. Br J Pharmacol. 2014;171(17):4112–24. https://doi.org/10.1111/bph.12757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (81973598).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanqun Chao or Shuo Zhang.

Ethics declarations

Competing interests

The authors have declared that no competing interest exists.

Human and animals rights

As this article is only a review of data already collected in the database, this article does not include any studies directly involving human participants.

Informed consent

For this type of study, formal consent is not required.

Data availability

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Liu, J., Chao, G. et al. PARs in the inflammation-cancer transformation of CRC. Clin Transl Oncol 25, 1242–1251 (2023). https://doi.org/10.1007/s12094-022-03052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03052-x

Keywords

Navigation