Skip to main content

Advertisement

Log in

siRNA and targeted delivery systems in breast cancer therapy

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–87.

    Article  CAS  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  3. Niklaus NJ, Tokarchuk I, Zbinden M, Schläfli AM, Maycotte P, Tschan MP. The multifaceted functions of autophagy in breast cancer development and treatment. Cells. 2021;10(6):1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yeo SK, Guan J-LJTic. Breast cancer: multiple subtypes within a tumor? Trend Cancer. 2017;3(11):753–60.

    Article  CAS  Google Scholar 

  5. Anderson WF, Jatoi I, Tse J, Rosenberg PSJJOCO. Male breast cancer: a population-based comparison with female breast cancer. J Clin Oncol. 2010;28(2):232.

    Article  PubMed  Google Scholar 

  6. Cortesi L, Rugo HS, Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target Oncol. 2021;16(3):255–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rizzolo P, Silvestri V, Falchetti M, Ottini LJTaocg. Inherited and acquired alterations in development of breast cancer. Appl Clin Genet. 2011;4:145.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Godet I, Gilkes DMJIcs. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017. https://doi.org/10.1576/ICST.1000228.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Claus EB, Risch N, Thompson WDJC. Autosomal dominant inheritance of early-onset breast cancer. Implic Risk Predic. 1994;73(3):643–51.

    CAS  Google Scholar 

  10. Lancet CGoHFiBCJT. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet. 2001;358(9291):1389–99.

    Article  Google Scholar 

  11. Winter C, Nilsson MP, Olsson E, George AM, Chen Y, Kvist A, et al. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann Oncol. 2016;27(8):1532–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. Jama. 2017;317(23):2402–16.

    Article  CAS  PubMed  Google Scholar 

  13. El-Arabey AA, Abdalla M. The role of GATA3 in the metastasis of triple-negative breast cancer and high-grade serous ovarian cancer. Hum Cell. 2022;35(4):1298–300.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z. circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta. 2021;523:120–30.

    Article  CAS  PubMed  Google Scholar 

  15. McDonald ES, Clark AS, Tchou J, Zhang P, Freedman GMJJONM. Clinical diagnosis and management of breast cancer. J Nucl Med. 2016;57(Supplement 1):9–16.

    Article  Google Scholar 

  16. Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother. 2021;141: 111824.

    Article  CAS  PubMed  Google Scholar 

  17. Hashemi F, Zarrabi A, Zabolian A, Saleki H, Farahani MV, Sharifzadeh SO, et al. Novel strategy in breast cancer therapy: revealing the bright side of ginsenosides. Curr Mol Pharmacol. 2021;14(6):1093–111.

    Article  CAS  PubMed  Google Scholar 

  18. Cao X, Li Y, Wang Y, Yu T, Zhu C, Zhang X, et al. Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS ONE. 2022;17(1): e0261370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheuk IW, Chen J, Siu M, Ho JC, Lam SS, Shin VY, et al. Resveratrol enhanced chemosensitivity by reversing macrophage polarization in breast cancer. Clin Transl Oncol. 2022;24(5):854–63.

    Article  CAS  PubMed  Google Scholar 

  20. DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal AJCE, et al. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomark Prev. 2015;24(10):1495–506.

    Article  Google Scholar 

  21. Ahirwar DK, Charan M, Mishra S, Verma AK, Shilo K, Ramaswamy B, et al. Slit2 inhibits breast cancer metastasis by activating M1-like phagocytic and antifibrotic macrophages. Can Res. 2021;81(20):5255–67.

    Article  CAS  Google Scholar 

  22. Zhao Y, Hu Z, Li J, Hu T. EZH2 exacerbates breast cancer by methylating and activating STAT3 directly. J Cancer. 2021;12(17):5220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu TJ, Liu YY, Li XG, Lian B, Lu XX, Jin X, et al. PDSS1-mediated activation of CAMK2A-STAT3 signaling promotes metastasis in triple-negative breast cancer. Can Res. 2021;81(21):5491–505.

    Article  CAS  Google Scholar 

  24. Xun J, Gao R, Wang B, Li Y, Ma Y, Guan J, et al. Histone demethylase KDM6B inhibits breast cancer metastasis by regulating Wnt/β-catenin signaling. FEBS Open Bio. 2021;11(8):2273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu Q, Zhang Q, Dong M, Yu Y. MicroRNA-638 inhibits the progression of breast cancer through targeting HOXA9 and suppressing Wnt/β-cadherin pathway. World J Surg Oncol. 2021;19(1):247.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yi C, Li G, Wang W, Sun Y, Zhang Y, Zhong C, et al. Disruption of YY1-EZH2 interaction using synthetic peptides inhibits breast cancer development. Cancers. 2021;13(10):2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu S, Song Y, Zhou Y, Jiao Y, Li G. METTL3 accelerates breast cancer progression via regulating EZH2 m(6)A modification. J Healthc Eng. 2022;2022:5794422.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zuckerman JE, Davis MEJNrDd. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nature Rev Drug Discov. 2015;14(12):843–56.

    Article  CAS  Google Scholar 

  29. Schlee M, Hornung V, Hartmann GJMT. siRNA and isRNA: two edges of one sword. Mol Ther. 2006;14(4):463–70.

    Article  CAS  PubMed  Google Scholar 

  30. Wingard SA. Hosts and symptoms of ring spot, a virus disease of plants. 1928.

  31. Wianny F, Zernicka-Goetz MJNcb. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2000;2(2):70–5.

    Article  CAS  PubMed  Google Scholar 

  32. Svoboda P, Stein P, Hayashi H, Schultz RMJD. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000;127(19):4147–56.

    Article  CAS  PubMed  Google Scholar 

  33. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl TJN. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.

    Article  CAS  PubMed  Google Scholar 

  34. Zamore PD, Tuschl T, Sharp PA, Bartel DPJc. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  35. Kim Y-D, Park T-E, Singh B, Maharjan S, Choi Y-J, Choung P-H, et al. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine. 2015;10(7):1165–88.

    Article  CAS  PubMed  Google Scholar 

  36. Elbashir SM, Lendeckel W, Tuschl TJG, development. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 2001;15(2):188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hutvagner G, Zamore PDJS. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.

    Article  CAS  PubMed  Google Scholar 

  38. Lin X, Lin L, Wu J, Jiang W, Wu J, Yang J, et al. A targeted siRNA-loaded PDL1-exosome and functional evaluation against lung cancer. Thorac Cancer. 2022;13(11):1691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang S, Luo Z, Zhou X, Wang C, Luo Y, Yi N, et al. Multifunctional nanoparticles loaded with vascular endothelial growth factor inhibitors and MED1 siRNA to inhibit breast cancer progression by targeting tumor-associated macrophages and breast cancer cells. J Biomed Nanotechnol. 2021;17(12):2364–73.

    Article  CAS  PubMed  Google Scholar 

  40. Lee JW, Choi J, Choi Y, Kim K, Yang Y, Kim SH, et al. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. J Controll Release. 2022;351:713–26.

    Article  CAS  Google Scholar 

  41. Zou W, Zhang Y, Bai G, Zhuang J, Wei L, Wang Z, et al. siRNA-induced CD44 knockdown suppresses the proliferation and invasion of colorectal cancer stem cells through inhibiting epithelial-mesenchymal transition. J Cell Mol Med. 2022;26(7):1969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trembley JH, Li B, Kren BT, Gravely AA, Caicedo-Granados E, Klein MA, et al. CX-4945 and siRNA-mediated knockdown of CK2 improves cisplatin response in HPV(+) and HPV(-) HNSCC cell lines. Biomedicines. 2021;9(5):571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamran S, Seyedrezazadeh E, Shanehbandi D, Asadi M, Zafari V, Shekari N, et al. Combination therapy with KRAS and P38α siRNA suppresses colorectal cancer growth and development in SW480 cell line. J Gastrointest Cancer. 2021;53:597.

    Article  PubMed  Google Scholar 

  44. Lu S, Gao J, Jia H, Li Y, Duan Y, Song F, et al. PD-1-siRNA delivered by attenuated salmonella enhances the antitumor effect of chloroquine in colon cancer. Front Immunol. 2021;12: 707991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yeh CH, Chen J, Zheng G, Huang L, Hsu YC. Novel pyropheophorbide phosphatydic acids photosensitizer combined EGFR siRNA gene therapy for head and neck cancer treatment. Pharmaceutics. 2021;13(9):1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung SL, Yee MS, Hii LW, Lim WM, Ho MY, Khiew PS, et al. Advances in nanomaterials used in co-delivery of siRNA and small molecule drugs for cancer treatment. Nanomaterials (Basel, Switzerland). 2021;11(10):2467.

    Article  CAS  PubMed  Google Scholar 

  47. Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci. 2021;274: 119337.

    Article  CAS  PubMed  Google Scholar 

  48. Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Hushmandi K, Rahmanian V, et al. Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: approaching to a new era of cancer chemotherapy. Life Sci. 2021;277:119430.

    Article  CAS  PubMed  Google Scholar 

  49. Mirzaei S, Mahabady MK, Zabolian A, Abbaspour A, Fallahzadeh P, Noori M, et al. Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: current status with an emphasis on delivery systems. Life Sci. 2021;275:119368.

    Article  CAS  PubMed  Google Scholar 

  50. Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, et al. Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym. 2021;260:117809.

    Article  CAS  PubMed  Google Scholar 

  51. Subhan A, Attia SA, Vladimir PT. Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: a comprehensive review of the literature. Nanomedicine (London, England). 2022;17(1):41–64.

    Article  CAS  PubMed  Google Scholar 

  52. Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev. 2021;179: 114038.

    Article  CAS  PubMed  Google Scholar 

  53. Hattab D, Gazzali AM, Bakhtiar A. Clinical advances of siRNA-based nanotherapeutics for cancer treatment. Pharmaceutics. 2021;13(7):1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao S, Lin C, Li X, Liang Y, Saw PE. TME-responsive multistage nanoplatform for siRNA delivery and effective cancer therapy. Int J Nanomed. 2021;16:5909–21.

    Article  Google Scholar 

  55. Yin W, Qian SM. CD44v6-O-MWNTS-loaded gemcitabine and CXCR4 siRNA improves the anti-tumor effectiveness of ovarian cancer. Front Cell Dev Biol. 2021;9: 687322.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, De Rycke R, De Smedt S, et al. Enhanced sirna delivery and selective apoptosis induction in H1299 cancer cells by layer-by-layer-assembled Se nanocomplexes: toward more efficient cancer therapy. Front Mol Biosci. 2021;8: 639184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patel V, Lalani R, Vhora I, Bardoliwala D, Patel A, Ghosh S, et al. Co-delivery of cisplatin and siRNA through hybrid nanocarrier platform for masking resistance to chemotherapy in lung cancer. Drug Deliv Transl Res. 2021;11(5):2052–71.

    Article  CAS  PubMed  Google Scholar 

  58. Conte C, Monteiro PF, Gurnani P, Stolnik S, Ungaro F, Quaglia F, et al. Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale. 2021;13(26):11414–26.

    Article  CAS  PubMed  Google Scholar 

  59. Kuang G, Lu H, He S, Xiong H, Yu J, Zhang Q, et al. Near-infrared light-triggered polyprodrug/siRNA loaded upconversion nanoparticles for multi-modality imaging and synergistic cancer therapy. Adv Healthc Mater. 2021;10(20): e2100938.

    Article  PubMed  Google Scholar 

  60. Allahyari SE, Hajizadeh F, Zekiy AO, Mansouri N, Gilan PS, Mousavi SM, et al. Simultaneous inhibition of CD73 and IL-6 molecules by siRNA-loaded nanoparticles prevents the growth and spread of cancer. Nanomed Nanotechnol Biol Med. 2021;34: 102384.

    Article  CAS  Google Scholar 

  61. Zhang X, Lin ZI, Yang J, Liu GL, Hu Z, Huang H, et al. Carbon dioxide-derived biodegradable and cationic polycarbonates as a new sirna carrier for gene therapy in pancreatic cancer. Nanomaterials (Basel, Switzerland). 2021;11(9):2312.

    Article  CAS  PubMed  Google Scholar 

  62. Majumder J, Minko T. Multifunctional lipid-based nanoparticles for codelivery of anticancer drugs and siRNA for treatment of non-small cell lung cancer with different level of resistance and EGFR mutations. Pharmaceutics. 2021;13(7):1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shi M, Wang Y, Zhao X, Zhang J, Hu H, Qiao M, et al. Stimuli-responsive and highly penetrable nanoparticles as a multifunctional nanoplatform for boosting nonsmall cell lung cancer siRNA therapy. ACS Biomater Sci Eng. 2021;7(7):3141–55.

    Article  CAS  PubMed  Google Scholar 

  64. Salehi Khesht AM, Karpisheh V, Sahami Gilan P, Melnikova LA, Olegovna Zekiy A, Mohammadi M, et al. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int J Biol Macromol. 2021;186:849–63.

    Article  CAS  PubMed  Google Scholar 

  65. Zou Y, Xiao F, Song L, Sun B, Sun D, Chu D, et al. A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. Int J Pharm. 2021;606: 120888.

    Article  CAS  PubMed  Google Scholar 

  66. Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, et al. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer. Bioengineering. 2020;7(3):91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, et al. Progress in natural compounds/siRNA co-delivery employing nanovehicles for cancer therapy. ACS Comb Sci. 2020;22(12):669–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu H, Gan X, Jiang X, Diao S, Wu H, Hu J. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res. 2019;38(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Khan MA, Siddiqui S, Ahmad I, Singh R, Mishra DP, Srivastava AN, et al. Phytochemicals from Ajwa dates pulp extract induce apoptosis in human triple-negative breast cancer by inhibiting AKT/mTOR pathway and modulating Bcl-2 family proteins. Sci Rep. 2021;11(1):10322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alcon C, Gómez Tejeda Zañudo J, Albert R, Wagle N, Scaltriti M, Letai A, et al. ER+ breast cancer strongly depends on MCL-1 and BCL-xL anti-apoptotic proteins. Cells. 2021;10(7):1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Mello LJ, Souza GR, Winter E, Silva AH, Pittella F, Creczynski-Pasa TB. Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles. Nanotechnology. 2017;28(17): 175101.

    Article  PubMed  Google Scholar 

  72. Chen C, Liang H, Qin R, Li X, Wang L, Du S, et al. Doramectin inhibits glioblastoma cell survival via regulation of autophagy in vitro and in vivo. Int J Oncol. 2022. https://doi.org/10.3892/ijo.2022.5319.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Martini S, Zuco V, Tortoreto M, Percio S, Campi E, El Bezawy R, et al. miR-34a-mediated survivin inhibition improves the antitumor activity of selinexor in triple-negative breast cancer. Pharmaceuticals (Basel, Switzerland). 2021;14(6):523.

    Article  CAS  PubMed  Google Scholar 

  74. Wang H, Ye YF. Effect of survivin siRNA on biological behaviour of breast cancer MCF7 cells. Asian Pac J Trop Med. 2015;8(3):225–8.

    Article  CAS  PubMed  Google Scholar 

  75. Chen J, Dang Y, Feng W, Qiao C, Liu D, Zhang T, et al. SOX18 promotes gastric cancer metastasis through transactivating MCAM and CCL7. Oncogene. 2020;39(33):5536–52.

    Article  CAS  PubMed  Google Scholar 

  76. Miao Z, Deng X, Shuai P, Zeng J. Upregulation of SOX18 in colorectal cancer cells promotes proliferation and correlates with colorectal cancer risk. Onco Targets Ther. 2018;11:8481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Young N, Hahn CN, Poh A, Dong C, Wilhelm D, Olsson J, et al. Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development. J Natl Cancer Inst. 2006;98(15):1060–7.

    Article  CAS  PubMed  Google Scholar 

  78. Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, et al. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. eLife. 2017. https://doi.org/10.7554/eLife.21221.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang J, Ma Y, Wang S, Chen F, Gu Y. Suppression of SOX18 by siRNA inhibits cell growth and invasion of breast cancer cells. Oncol Rep. 2016;35(6):3721–7.

    Article  CAS  PubMed  Google Scholar 

  80. Rahal OM, Wolfe AR, Mandal PK, Larson R, Tin S, Jimenez C, et al. Blocking interleukin (IL)4- and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int J Radiat Oncol Biol Phys. 2018;100(4):1034–43.

    Article  CAS  PubMed  Google Scholar 

  81. Binnemars-Postma K, Bansal R, Storm G, Prakash J. Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB J. 2018;32(2):969–78.

    Article  CAS  PubMed  Google Scholar 

  82. Salguero-Aranda C, Sancho-Mensat D, Canals-Lorente B, Sultan S, Reginald A, Chapman L. STAT6 knockdown using multiple siRNA sequences inhibits proliferation and induces apoptosis of human colorectal and breast cancer cell lines. PLoS ONE. 2019;14(5): e0207558.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Garg M, Shanmugam MK, Bhardwaj V, Goel A, Gupta R, Sharma A, et al. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med Res Rev. 2021;41(3):1291–336.

    Article  CAS  Google Scholar 

  84. Ashrafizadeh M, Zarrabi A, Orouei S, Zarrin V, Rahmani Moghadam E, Zabolian A, et al. STAT3 pathway in gastric cancer: signaling, therapeutic targeting and future prospects. Biology. 2020;9(6):126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, et al. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: new insight to proliferation and metastasis. Life Sci. 2021;270:119006.

    Article  CAS  PubMed  Google Scholar 

  86. Jiang D, Xu J, Liu S, Nasser MI, Wei W, Mao T, et al. Rosmanol induces breast cancer cells apoptosis by regulating PI3K/AKT and STAT3/JAK2 signaling pathways. Oncol Lett. 2021;22(2):631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dai L, Cheng L, Zhang X, Jiang Q, Zhang S, Wang S, et al. Plasmid-based STAT3-siRNA efficiently inhibits breast tumor growth and metastasis in mice. Neoplasma. 2011;58(6):538–47.

    Article  CAS  PubMed  Google Scholar 

  88. Han R, Zhao J, Lu L. MicroRNA-34a expression affects breast cancer invasion in vitro and patient survival via downregulation of E2F1 and E2F3 expression. Oncol Rep. 2020;43(6):2062–72.

    CAS  PubMed  Google Scholar 

  89. Tan PY, Wen LJ, Li HN, Chai SW. MiR-548c-3p inhibits the proliferation, migration and invasion of human breast cancer cell by targeting E2F3. Cytotechnology. 2020;72(5):751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jusino S, Rivera-Rivera Y, Chardón-Colón C, Ruiz-Justiz AJ, Vélez-Velázquez J, Isidro A, et al. E2F3 drives the epithelial-to-mesenchymal transition, cell invasion, and metastasis in breast cancer. Exp Biol Med (Maywood). 2021;246(19):2057–71.

    Article  CAS  PubMed  Google Scholar 

  91. Vimala K, Sundarraj S, Sujitha MV, Kannan S. Curtailing overexpression of E2F3 in breast cancer using siRNA (E2F3)-based gene silencing. Arch Med Res. 2012;43(6):415–22.

    Article  CAS  PubMed  Google Scholar 

  92. Feng Z, Qiao R, Ren Z, Hou X, Feng J, He X, et al. Could CTSK and COL4A2 be specific biomarkers of poor prognosis for patients with gastric cancer in Asia?-a microarray analysis based on regional population. J gastrointest Oncol. 2020;11(2):386–401.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Brown CW, Brodsky AS, Freiman RN. Notch3 overexpression promotes anoikis resistance in epithelial ovarian cancer via upregulation of COL4A2. Mol Cancer Res. 2015;13(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  94. JingSong H, Hong G, Yang J, Duo Z, Li F, WeiCai C, et al. siRNA-mediated suppression of collagen type iv alpha 2 (COL4A2) mRNA inhibits triple-negative breast cancer cell proliferation and migration. Oncotarget. 2017;8(2):2585–93.

    Article  PubMed  Google Scholar 

  95. Pileczki V, Pop L, Braicu C, Budisan L, Bolba Morar G, Del CM-BP, et al. Double gene siRNA knockdown of mutant p53 and TNF induces apoptosis in triple-negative breast cancer cells. OncoTargets Ther. 2016;9:6921–33.

    Article  CAS  Google Scholar 

  96. Sun HL, Men JR, Liu HY, Liu MY, Zhang HS. FOXM1 facilitates breast cancer cell stemness and migration in YAP1-dependent manner. Arch Biochem Biophys. 2020;685: 108349.

    Article  CAS  PubMed  Google Scholar 

  97. Kwon YS, Lee MG, Baek J, Kim NY, Jang H, Kim S. Acyl-CoA synthetase-4 mediates radioresistance of breast cancer cells by regulating FOXM1. Biochem Pharmacol. 2021;192: 114718.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang N, Pati D. Separase inhibitor sepin-1 inhibits foxm1 expression and breast cancer cell growth. J Cancer Sci Ther. 2018. https://doi.org/10.4172/1948-5956.1000517.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang M, Gartel AL. The suppression of FOXM1 and its targets in breast cancer xenograft tumors by siRNA. Oncotarget. 2011;2(12):1218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Arami S, Mahdavi M, Rashidi MR, Yekta R, Rahnamay M, Molavi L, et al. Apoptosis induction activity and molecular docking studies of survivin siRNA carried by Fe(3)O(4)-PEG-LAC-chitosan-PEI nanoparticles in MCF-7 human breast cancer cells. J Pharm Biomed Anal. 2017;142:145–54.

    Article  CAS  PubMed  Google Scholar 

  101. Xu Y, Zhang S, Liao X, Li M, Chen S, Li X, et al. Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling. Mol Cancer. 2021;20(1):98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhu B, Zhang X, Sun S, Fu Y, Xie L, Ai P. NF-κB and neutrophil extracellular traps cooperate to promote breast cancer progression and metastasis. Exp Cell Res. 2021;405(2): 112707.

    Article  CAS  PubMed  Google Scholar 

  103. Aqil F, Munagala R, Agrawal AK, Jeyabalan J, Tyagi N, Rai SN, et al. Anthocyanidins inhibit growth and chemosensitize triple-negative breast cancer via the NF-κB signaling pathway. Cancers. 2021;13(24):6248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qu J, Li J, Zhang Y, He R, Liu X, Gong K, et al. AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway. Cell Biosci. 2021;11(1):163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qin B, Cheng K. Silencing of the IKKε gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Res. 2010;12(5):R74.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Namee NM, O’Driscoll L. Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta. 2018;1870(2):123–36.

    CAS  Google Scholar 

  107. Lev S. Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem Soc Trans. 2020;48(2):657–65.

    Article  CAS  PubMed  Google Scholar 

  108. Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health. 2020;19(1):117.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 2016;35(4):515–24.

    Article  CAS  PubMed  Google Scholar 

  110. Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P, et al. Exosomes and breast cancer drug resistance. Cell Death Dis. 2020;11(11):987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, et al. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res. 2022;41(1):105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, et al. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol. 2022;15(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, Husmandi K, Zabolian A, Shahinozzaman M, et al. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett. 2021;508:104–14.

    Article  CAS  PubMed  Google Scholar 

  114. Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: a review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohyd Polym. 2021;272: 118491.

    Article  CAS  Google Scholar 

  115. Wardhani BW, Puteri MU, Watanabe Y, Louisa M, Setiabudy R, Kato M. TGF-β-induced TMEPAI attenuates the response of triple-negative breast cancer cells to doxorubicin and paclitaxel. J Exp Pharmacol. 2020;12:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kumar U, Hu Y, Masrour N, Castellanos-Uribe M, Harrod A, May ST, et al. MicroRNA-495/TGF-β/FOXC1 axis regulates multidrug resistance in metaplastic breast cancer cells. Biochem Pharmacol. 2021;192: 114692.

    Article  CAS  PubMed  Google Scholar 

  117. Ciocan-Cȃrtiţă CA, Jurj A, Raduly L, Cojocneanu R, Moldovan A, Pileczki V, et al. New perspectives in triple-negative breast cancer therapy based on treatments with TGFβ1 siRNA and doxorubicin. Mol Cell Biochem. 2020;475(1–2):285–99.

    Article  PubMed  Google Scholar 

  118. Manupati K, Yeeravalli R, Kaushik K, Singh D, Mehra B, Gangane N, et al. Activation of CD44-Lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis. Biochim Biophys Acta. 2021;1867(11): 166228.

    Article  CAS  Google Scholar 

  119. Chen W, Patel D, Jia Y, Yu Z, Liu X, Shi H, et al. MARCH8 suppresses tumor metastasis and mediates degradation of STAT3 and CD44 in breast cancer cells. Cancers. 2021;13(11):2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pan M, Li M, Guo M, Zhou H, Xu H, Zhao F, et al. Knockdown of ALDH1A3 reduces breast cancer stem cell marker CD44 via the miR-7-TGFBR2-Smad3-CD44 regulatory axis. Exp Ther Med. 2021;22(4):1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vahidian F, Safarzadeh E, Mohammadi A, Najjary S, Mansoori B, Majidi J, et al. siRNA-mediated silencing of CD44 delivered by jet pei enhanced doxorubicin chemo sensitivity and altered miRNA expression in human breast cancer cell line (MDA-MB468). Mol Biol Rep. 2020;47(12):9541–51.

    Article  CAS  PubMed  Google Scholar 

  122. Thakur KK, Kumar A, Banik K, Verma E, Khatoon E, Harsha C, et al. Long noncoding RNAs in triple-negative breast cancer: a new frontier in the regulation of tumorigenesis. J Cell Physiol. 2021;236(12):7938–65.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang S, Liang S, Wu D, Guo H, Ma K, Liu L. LncRNA coordinates Hippo and mTORC1 pathway activation in cancer. Cell Death Dis. 2021;12(9):822.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dong S, Ma M, Li M, Guo Y, Zuo X, Gu X, et al. LncRNA MEG3 regulates breast cancer proliferation and apoptosis through miR-141-3p/RBMS3 axis. Genomics. 2021;113(4):1689–704.

    Article  CAS  PubMed  Google Scholar 

  125. Zhai D, Li T, Ye R, Bi J, Kuang X, Shi Y, et al. LncRNA LGALS8-AS1 promotes breast cancer metastasis through miR-125b-5p/SOX12 feedback regulatory network. Front Oncol. 2021;11: 711684.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yuan Y, Li E, Zhao J, Wu B, Na Z, Cheng W, et al. Highly penetrating nanobubble polymer enhances LINC00511-siRNA delivery for improving the chemosensitivity of triple-negative breast cancer. Anticancer Drugs. 2021;32(2):178–88.

    Article  CAS  PubMed  Google Scholar 

  127. Lee KC, Wu KL, Yen CK, Chang SF, Chen CN, Lu YC. Inhibition of NLRP3 by fermented quercetin decreases resistin-induced chemoresistance to 5-fluorouracil in human colorectal cancer cells. Pharmaceuticals (Basel, Switzerland). 2022;15(7):798.

    Article  CAS  PubMed  Google Scholar 

  128. Li E, Xia M, Du Y, Long K, Ji F, Pan F, et al. METTL3 promotes homologous recombination repair and modulates chemotherapeutic response in breast cancer by regulating the EGF/Rad51 axis. eLife. 2022. https://doi.org/10.7554/eLife.75231.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Azzoni V, Wicinski J, Macario M, Castagné M, Finetti P, Ambrosova K, et al. BMI1 nuclear location is critical for RAD51-dependent response to replication stress and drives chemoresistance in breast cancer stem cells. Cell Death Dis. 2022;13(2):96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu Z, Zhu L, Mai J, Shen H, Xu R. Rad51 silencing with siRNA delivered by porous silicon-based microparticle enhances the anti-cancer effect of doxorubicin in triple-negative breast cancer. J Biomed Nanotechnol. 2021;17(12):2351–63.

    Article  CAS  PubMed  Google Scholar 

  131. Carabias P, Espelt MV, Bacigalupo ML, Rojas P, Sarrias L, Rubin A, et al. Galectin-1 confers resistance to doxorubicin in hepatocellular carcinoma cells through modulation of P-glycoprotein expression. Cell Death Dis. 2022;13(1):79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang G, Cao L, Jiang Y, Zhang T, Wang H, Wang Z, et al. Anlotinib reverses multidrug resistance (MDR) in osteosarcoma by inhibiting P-glycoprotein (PGP1) function in vitro and in vivo. Front Pharmacol. 2021;12: 798837.

    Article  CAS  PubMed  Google Scholar 

  133. Abd-Ellatef GEF, Gazzano E, El-Desoky AH, Hamed AR, Kopecka J, Belisario DC, et al. Glabratephrin reverses doxorubicin resistance in triple negative breast cancer by inhibiting P-glycoprotein. Pharmacol Res. 2022;175: 105975.

    Article  CAS  PubMed  Google Scholar 

  134. Teng YN, Huang BH, Huang SY, Wu IT, Wu TS, Lee TE, et al. Cinnamophilin overcomes cancer multi-drug resistance via allosterically modulating human P-glycoprotein on both drug binding sites and ATPase binding sites. Biomed pharmacother. 2021;144:112379.

    Article  CAS  PubMed  Google Scholar 

  135. Wu Y, Zhang Y, Zhang W, Sun C, Wu J, Tang J. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids Surf B. 2016;138:60–9.

    Article  CAS  Google Scholar 

  136. Bagheri F, Safarian S, Eslaminejad MB, Sheibani N. siRNA-mediated knock-down of DFF45 amplifies doxorubicin therapeutic effects in breast cancer cells. Cell Oncol (Dordr). 2013;36(6):515–26.

    Article  CAS  PubMed  Google Scholar 

  137. Aliabadi HM, Maranchuk R, Kucharski C, Mahdipoor P, Hugh J, Uludağ H. Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy. J Controll Release. 2013;172(1):219–28.

    Article  CAS  Google Scholar 

  138. Yu X, Ghamande S, Liu H, Xue L, Zhao S, Tan W, et al. Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2(+) breast cancer. Mol Ther Nucl Acids. 2018;10:317–30.

    Article  CAS  Google Scholar 

  139. Parra E, Ferreira J. The effect of siRNA-Egr-1 and camptothecin on growth and chemosensitivity of breast cancer cell lines. Oncol Rep. 2010;23(4):1159–65.

    Article  CAS  PubMed  Google Scholar 

  140. Gilboa-Geffen A, Hamar P, Le MT, Wheeler LA, Trifonova R, Petrocca F, et al. Gene knockdown by EpCAM aptamer-siRNA chimeras suppresses epithelial breast cancers and their tumor-initiating cells. Mol Cancer Ther. 2015;14(10):2279–91.

    Article  CAS  PubMed  Google Scholar 

  141. Mahmood SF, Gruel N, Chapeaublanc E, Lescure A, Jones T, Reyal F, et al. A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis. 2014;35(3):670–82.

    Article  CAS  PubMed  Google Scholar 

  142. Lee J, Gollahon L. Nek2-targeted ASO or siRNA pretreatment enhances anticancer drug sensitivity in triple-negative breast cancer cells. Int J Oncol. 2013;42(3):839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dönmez Y, Gündüz U. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed pharmacother. 2011;65(2):85–9.

    Article  PubMed  Google Scholar 

  144. Nachreiner I, Hussain AF, Wullner U, Machuy N, Meyer TF, Fischer R, et al. Elimination of HER3-expressing breast cancer cells using aptamer-siRNA chimeras. Exp Ther Med. 2019;18(4):2401–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Asik E, Akpinar Y, Caner A, Kahraman N, Guray T, Volkan M, et al. EF2-kinase targeted cobalt-ferrite siRNA-nanotherapy suppresses BRCA1-mutated breast cancer. Nanomedicine (Lond). 2019;14(17):2315–38.

    Article  CAS  PubMed  Google Scholar 

  146. Meng X, Hu B, Hossain MM, Chen G, Sun Y, Zhang X. ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation. Int J Oncol. 2016;49(2):682–90.

    Article  CAS  PubMed  Google Scholar 

  147. Li F, Zhu Z, Xue M, He W, Zhang T, Feng L, et al. siRNA-based breast cancer therapy by suppressing 17β-hydroxysteroid dehydrogenase type 1 in an optimized xenograft cell and molecular biology model in vivo. Drug Des Dev Ther. 2019;13:757–66.

    Article  CAS  Google Scholar 

  148. Yu C, Luan Y, Wang Z, Zhao J, Xu C. Suppression of TAFI by siRNA inhibits invasion and migration of breast cancer cells. Mol Med Rep. 2017;16(3):3469–74.

    Article  CAS  PubMed  Google Scholar 

  149. Liu S, Huang W, Jin MJ, Fan B, Xia GM, Gao ZG. Inhibition of murine breast cancer growth and metastasis by survivin-targeted siRNA using disulfide cross-linked linear PEI. European J Pharm Sci. 2016;82:171–82.

    Article  CAS  Google Scholar 

  150. Shah H, Pang L, Wang H, Shu D, Qian SY, Sathish V. Growth inhibitory and anti-metastatic activity of epithelial cell adhesion molecule targeted three-way junctional delta-5-desaturase siRNA nanoparticle for breast cancer therapy. Nanomed Nanotechnol Biol Med. 2020;30: 102298.

    Article  CAS  Google Scholar 

  151. Rajput S, Puvvada N, Kumar BN, Sarkar S, Konar S, Bharti R, et al. Overcoming akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes. Mol Pharm. 2015;12(12):4214–25.

    Article  CAS  PubMed  Google Scholar 

  152. Dong X, Liu A, Zer C, Feng J, Zhen Z, Yang M, et al. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells. BMC Cancer. 2009;9:133.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhang Y, Wang Y, Gao W, Zhang R, Han X, Jia M, et al. Transfer of siRNA against XIAP induces apoptosis and reduces tumor cells growth potential in human breast cancer in vitro and in vivo. Breast Cancer Res Treat. 2006;96(3):267–77.

    Article  CAS  PubMed  Google Scholar 

  154. Dougherty CJ, Ichim TE, Liu L, Reznik G, Min WP, Ghochikyan A, et al. Selective apoptosis of breast cancer cells by siRNA targeting of BORIS. Biochem Biophys Res Commun. 2008;370(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  155. Li BX, Luo CL, Li H, Yang P, Zhang MC, Xu HM, et al. Effects of siRNA-mediated knockdown of jumonji domain containing 2A on proliferation, migration and invasion of the human breast cancer cell line MCF-7. Exp Ther Med. 2012;4(4):755–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jang JY, Choi Y, Jeon YK, Kim CW. Suppression of adenine nucleotide translocase-2 by vector-based siRNA in human breast cancer cells induces apoptosis and inhibits tumor growth in vitro and in vivo. Breast Cancer Res. 2008;10(1):R11.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Yang Z, Cai JH, Xie SJ, Li GX, Song WQ, Yan QH, et al. Therapeutic effects of signal transducer and activator of transcription 3 siRNA on human breast cancer in xenograft mice. Chin Med J. 2011;124(12):1854–61.

    CAS  PubMed  Google Scholar 

  158. Zang XP, Pento JT. SiRNA inhibition of ER-alpha expression reduces KGF-induced proliferation of breast cancer cells. Anticancer Res. 2008;28(5a):2733–5.

    CAS  PubMed  Google Scholar 

  159. Zhang ZH, Chen Y, Zhao HJ, Xie CY, Ding J, Hou YT. Silencing of heparanase by siRNA inhibits tumor metastasis and angiogenesis of human breast cancer in vitro and in vivo. Cancer Biol Ther. 2007;6(4):587–95.

    Article  CAS  PubMed  Google Scholar 

  160. Bjorge JD, Pang AS, Funnell M, Chen KY, Diaz R, Magliocco AM, et al. Simultaneous siRNA targeting of Src and downstream signaling molecules inhibit tumor formation and metastasis of a human model breast cancer cell line. PLoS ONE. 2011;6(4): e19309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Subramanian R, Gondi CS, Lakka SS, Jutla A, Rao JS. siRNA-mediated simultaneous downregulation of uPA and its receptor inhibits angiogenesis and invasiveness triggering apoptosis in breast cancer cells. Int J Oncol. 2006;28(4):831–9.

    CAS  PubMed  Google Scholar 

  162. Faltus T, Yuan J, Zimmer B, Krämer A, Loibl S, Kaufmann M, et al. Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia (New York, NY). 2004;6(6):786–95.

    Article  CAS  Google Scholar 

  163. Huang B, Zhou H, Lang X, Liu Z. siRNA-induced ABCE1 silencing inhibits proliferation and invasion of breast cancer cells. Mol Med Rep. 2014;10(4):1685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yu S, Chen Y, Li X, Gao Z, Liu G. Chitosan nanoparticle-delivered siRNA reduces CXCR4 expression and sensitizes breast cancer cells to cisplatin. 2017. Biosci Rep. https://doi.org/10.1042/BSR20170122.

  165. Gong C, Hu C, Gu F, Xia Q, Yao C, Zhang L, et al. Co-delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment. J Controll Release. 2017;266:272–86.

    Article  CAS  Google Scholar 

  166. Shu M, Gao F, Yu C, Zeng M, He G, Wu Y, et al. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology. 2020;31(33): 335102.

    Article  CAS  PubMed  Google Scholar 

  167. Bruniaux J, Djemaa SB, Hervé-Aubert K, Marchais H, Chourpa I, David S. Stealth magnetic nanocarriers of siRNA as platform for breast cancer theranostics. Int J Pharm. 2017;532(2):660–8.

    Article  CAS  PubMed  Google Scholar 

  168. Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J Controll Release. 2020;318:1–15.

    Article  CAS  Google Scholar 

  169. Zhou Z, Zhang Q, Zhang M, Li H, Chen G, Qian C, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics. 2018;8(17):4604–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bulbake U, Kommineni N, Ionov M, Bryszewska M, Khan W. Comparison of cationic liposome and PAMAM dendrimer for delivery of anti-Plk1 siRNA in breast cancer treatment. Pharm Dev Technol. 2020;25(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  171. Wong KH, Lu A, Chen X, Yang Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules. 2020;25(16):3620.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chen C, Guo Q, Fu H, Yu J, Wang L, Sun Y, et al. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast cancer progression and metastasis. Biomaterials. 2021;275: 120988.

    Article  CAS  PubMed  Google Scholar 

  173. Jin M, Jin G, Kang L, Chen L, Gao Z, Huang W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nanomed. 2018;13:2405–26.

    Article  CAS  Google Scholar 

  174. He C, Yue H, Xu L, Liu Y, Song Y, Tang C, et al. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 2020;103:213–22.

    Article  CAS  PubMed  Google Scholar 

  175. Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-mediated endocytosis drives robust siRNA delivery of polymeric nanoparticles to macrophages. ACS Nano. 2021;15(5):8267–82.

    Article  CAS  PubMed  Google Scholar 

  176. Song Y, Tang C, Yin C. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Biomaterials. 2018;185:117–32.

    Article  CAS  PubMed  Google Scholar 

  177. Norouzi P, Motasadizadeh H, Atyabi F, Dinarvand R, Gholami M, Farokhi M, et al. Combination therapy of breast cancer by codelivery of doxorubicin and survivin siRNA using polyethylenimine modified silk fibroin nanoparticles. ACS Biomater Sci Eng. 2021;7(3):1074–87.

    Article  CAS  PubMed  Google Scholar 

  178. Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, et al. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol. 2022;173: 103680.

    Article  PubMed  Google Scholar 

  179. Lan J, Sun L, Xu F, Liu L, Hu F, Song D, et al. M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Can Res. 2019;79(1):146–58.

    Article  CAS  Google Scholar 

  180. Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 2020;13(1):156.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhang C, Yuan W, Wu Y, Wan X, Gong Y. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sci. 2021;266: 118886.

    Article  CAS  PubMed  Google Scholar 

  182. Mao G, Zheng S, Li J, Liu X, Zhou Q, Cao J, et al. Glipizide combined with ANP suppresses breast cancer growth and metastasis by inhibiting angiogenesis through VEGF/VEGFR2 signaling. Anti Cancer Agents Med Chem. 2021;22:1735.

    Article  Google Scholar 

  183. Tian M, Chen K, Huang J, Chu D, Li J, Huang K, et al. Asiatic acid inhibits angiogenesis and vascular permeability through the VEGF/VEGFR2 signaling pathway to inhibit the growth and metastasis of breast cancer in mice. Phytother Res. 2021;35(11):6389–400.

    Article  CAS  PubMed  Google Scholar 

  184. Yang Y, Meng Y, Ye J, Xia X, Wang H, Li L, et al. Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle. J Controll Release. 2018;287:103–20.

    Article  CAS  Google Scholar 

  185. Zhang C, Zhao Y, Zhang E, Jiang M, Zhi D, Chen H, et al. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Deliv. 2020;27(1):1397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Jin M, Hou Y, Quan X, Chen L, Gao Z, Huang W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties (II): co-delivery of paclitaxel and VEGF siRNA for synergistic breast cancer therapy in mice. Int J Nanomed. 2021;16:5479–94.

    Article  Google Scholar 

  187. Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: recent advances. Carbohydr Polym. 2021;272: 118464.

    Article  CAS  PubMed  Google Scholar 

  188. Dubey SK, Bhatt T, Agrawal M, Saha RN, Saraf S, Saraf S, et al. Application of chitosan modified nanocarriers in breast cancer. Int J Biol Macromol. 2022;194:521–38.

    Article  CAS  PubMed  Google Scholar 

  189. Shikhi-Abadi PG, Irani M. A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int J Biol Macromol. 2021;183:790–810.

    Article  CAS  PubMed  Google Scholar 

  190. Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, et al. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: recent advances and future directions in cancer theranostics. Int J Biol Macromol. 2020;145:282–300.

    Article  CAS  PubMed  Google Scholar 

  191. Rostami N, Nikkhoo A, Khazaei-Poul Y, Farhadi S, Sadat Haeri M, Moghadaszadeh Ardebili S, et al. Coinhibition of S1PR1 and GP130 by siRNA-loaded alginate-conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells. J Cell Physiol. 2020;235(12):9702–17.

    Article  CAS  PubMed  Google Scholar 

  192. Hu Q, Luo Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: a review. Int J Biol Macromol. 2021;179:125–35.

    Article  CAS  PubMed  Google Scholar 

  193. Potara M, Nagy-Simon T, Focsan M, Licarete E, Soritau O, Vulpoi A, et al. Folate-targeted Pluronic-chitosan nanocapsules loaded with IR780 for near-infrared fluorescence imaging and photothermal-photodynamic therapy of ovarian cancer. Coll Surf B. 2021;203: 111755.

    Article  CAS  Google Scholar 

  194. Ferreira C, Matthews C, Missailidis SJTb. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol. 2006;27(6):289–301.

    Article  CAS  Google Scholar 

  195. Jafari R, Majidi Zolbanin N, Majidi J, Atyabi F, Yousefi M, Jadidi-Niaragh F, et al. Anti-mucin1 aptamer-conjugated chitosan nanoparticles for targeted co-delivery of docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran Biomed J. 2019;23(1):21–33.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Byeon Y, Lee JW, Choi WS, Won JE, Kim GH, Kim MG, et al. CD44-targeting plga nanoparticles incorporating paclitaxel and FAK siRNA overcome chemoresistance in epithelial ovarian cancer. Can Res. 2018;78(21):6247–56.

    Article  CAS  Google Scholar 

  197. Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020;25(11):2692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ahmadzada T, Reid G, McKenzie DR. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev. 2018;10(1):69–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Thapa B, Bahadur Kc R, Uludağ H. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery. Int J Cancer. 2018;142(3):597–606.

    Article  CAS  PubMed  Google Scholar 

  200. Aliabadi H, Mahdipoor P, Uludağ HJCgt. Polymeric delivery of siRNA for dual silencing of Mcl-1 and P-glycoprotein and apoptosis induction in drug-resistant breast cancer cells. Cancer Gene Ther. 2013;20(3):169–77.

    Article  CAS  PubMed  Google Scholar 

  201. Bahadur KR, Landry B, Aliabadi HM, Lavasanifar A, Uludağ HJAb. Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression. Acta Biomater. 2011;7(5):2209–17.

    Article  PubMed  Google Scholar 

  202. Parmar MB, Löbenberg KCR, Uludağ H. Additive polyplexes to undertake siRNA therapy against CDC20 and survivin in breast cancer cells. Biomacromolecules. 2018;19(11):4193–206.

    Article  CAS  PubMed  Google Scholar 

  203. Niculescu AG, Bîrcă AC, Grumezescu AM. New applications of lipid and polymer-based nanoparticles for nucleic acids delivery. Pharmaceutics. 2021;13(12):2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Katari O, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics for the treatment of psoriasis. Expert Opin Drug Deliv. 2021;18(12):1857–72.

    Article  CAS  PubMed  Google Scholar 

  205. Su CT, See DHW, Huang JW. Lipid-based nanocarriers in renal RNA therapy. Biomedicines. 2022;10(2):283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Semple SC, Leone R, Barbosa CJ, Tam YK, Lin PJC. Lipid nanoparticle delivery systems to enable mRNA-based therapeutics. Pharmaceutics. 2022;14(2):398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yadav K, Singh D, Singh MR, Pradhan MJMH. Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis. Med Hypotheses. 2020;145:110322.

    Article  CAS  PubMed  Google Scholar 

  208. Leboux R, Benne N, van Os W, Bussmann J, Kros A, Jiskoot W, et al. High-affinity antigen association to cationic liposomes via coiled coil-forming peptides induces a strong antigen-specific CD4+ T-cell response. Eur J Pharm Biopharm. 2021;158:96–105.

    Article  CAS  PubMed  Google Scholar 

  209. Cai W, Liu J, Zheng L, Xu Z, Chen J, Zhong J, et al. Study on the anti-infection ability of vancomycin cationic liposome combined with polylactide fracture internal fixator. Int J Biol Macromol. 2021;167:834–44.

    Article  CAS  PubMed  Google Scholar 

  210. Liu C, Zhang L, Zhu W, Guo R, Sun H, Chen X, et al. Barriers and strategies of cationic liposomes for cancer gene therapy. Mol Ther Methods Clin Dev. 2020;18:751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang C, Zhang S, Zhi D, Zhao Y, Cui S, Cui JJC, et al. Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Coll Surf A. 2020;585:124054.

    Article  CAS  Google Scholar 

  212. Hattori Y, Tamaki K, Ozaki K-i, Kawano K, Onishi HJJoDDS, Technology. Optimized combination of cationic lipids and neutral helper lipids in cationic liposomes for siRNA delivery into the lung by intravenous injection of siRNA lipoplexes. Mol Med Rep. 2019;52:1042–50.

    CAS  Google Scholar 

  213. Lee J, Ahn HJJB, communications br. PEGylated DC-Chol/DOPE cationic liposomes containing KSP siRNA as a systemic siRNA delivery carrier for ovarian cancer therapy. Biochem Biophys Res Commun. 2018;503(3):1716–22.

    Article  CAS  PubMed  Google Scholar 

  214. Khan A, Aljarbou AN, Aldebasi YH, Allemailem KS, Alsahli MA, Khan S, et al. Fatty acid synthase (FASN) siRNA-encapsulated-Her-2 targeted fab’-immunoliposomes for gene silencing in breast cancer cells. Int J Nanomed. 2020;15:5575–89.

    Article  CAS  Google Scholar 

  215. Xie S, Hou X, Yang W, Shi W, Yang X, Duan S, et al. Endoglin-aptamer-functionalized liposome-equipped PD-1-silenced t cells enhance antitumoral immunotherapeutic effects. Int J Nanomed. 2021;16:6017–34.

    Article  Google Scholar 

  216. Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, et al. Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv Mater (Deerfield Beach, Fla). 2022;34:e2109609.

    Article  Google Scholar 

  217. Lafi Z, Alshaer W, Hatmal MM, Zihlif M, Alqudah DA, Nsairat H, et al. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv. 2021;11(47):29164–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yu S, Bi X, Yang L, Wu S, Yu Y, Jiang B, et al. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J Biomed Nanotechnol. 2019;15(6):1135–48.

    Article  CAS  PubMed  Google Scholar 

  219. Li J, Ge X, Cui C, Zhang Y, Wang Y, Wang X, et al. Preparation and characterization of functionalized graphene oxide carrier for siRNA delivery. Int J Mol Sci. 2018;19(10):3202.

    Article  PubMed  PubMed Central  Google Scholar 

  220. de Lázaro I, Vranic S, Marson D, Rodrigues AF, Buggio M, Esteban-Arranz A, et al. Graphene oxide as a 2D platform for complexation and intracellular delivery of siRNA. Nanoscale. 2019;11(29):13863–77.

    Article  PubMed  Google Scholar 

  221. Chen S, Zhang S, Wang Y, Yang X, Yang H, Cui C. Anti-EpCAM functionalized graphene oxide vector for tumor targeted siRNA delivery and cancer therapy. Asian J Pharm Sci. 2021;16(5):598–611.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Mogurampelly S, Maiti PK. Translocation and encapsulation of siRNA inside carbon nanotubes. J Chem Phys. 2013;138(3): 034901.

    Article  PubMed  Google Scholar 

  223. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015.

    Article  CAS  PubMed  Google Scholar 

  224. Li D, Al-Jamal KT. siRNA design and delivery based on carbon nanotubes. Methods Mol Biol (Clifton, NJ). 2021;2282:181–93.

    Article  CAS  Google Scholar 

  225. Izadi S, Moslehi A, Kheiry H, Karoon Kiani F, Ahmadi A, Masjedi A, et al. Codelivery of HIF-1α siRNA and dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm Res. 2020;37(10):196.

    Article  CAS  PubMed  Google Scholar 

  226. Yang YY, Zhang W, Liu H, Jiang JJ, Wang WJ, Jia ZY. Cell-Penetrating peptide-modified graphene oxide nanoparticles loaded with rictor siRNA for the treatment of triple-negative breast cancer. Drug Des Dev Ther. 2021;15:4961–72.

    Article  CAS  Google Scholar 

  227. Wen G, Xin N. Dexmetomidine promotes the activity of breast cancer cells through miR-199a/HIF-1α axis. Transl Cancer Res. 2021;10(11):4817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. You D, Du D, Zhao X, Li X, Ying M, Hu X. Mitochondrial malic enzyme 2 promotes breast cancer metastasis via stabilizing HIF-1α under hypoxia. Chin J Cancer Res. 2021;33(3):308–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sun D, Zhang W, Li N, Zhao Z, Mou Z, Yang E, et al. Silver nanoparticles-quercetin conjugation to siRNA against drug-resistant Bacillus subtilis for effective gene silencing: in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2016;63:522–34.

    Article  CAS  PubMed  Google Scholar 

  230. Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomed. 2018;13:1851–65.

    Article  CAS  Google Scholar 

  231. Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl Mater Interfaces. 2020;12(39):43408–21.

    Article  CAS  PubMed  Google Scholar 

  232. Jin J, Qiu S, Wang P, Liang X, Huang F, Wu H, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J Exp Clin Cancer Res. 2019;38(1):377.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Moon SY, Lee H, Kim S, Hong JH, Chun SH, Lee HY, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21(1):931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Teng Y, Loveless R, Benson EM, Sun L, Shull AY, Shay C. SHOX2 cooperates with STAT3 to promote breast cancer metastasis through the transcriptional activation of WASF3. J Exp Clin Cancer Res. 2021;40(1):274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Budi HS, Izadi S, Timoshin A, Asl SH, Beyzai B, Ghaderpour A, et al. Blockade of HIF-1α and STAT3 by hyaluronate-conjugated TAT-chitosan-SPION nanoparticles loaded with siRNA molecules prevents tumor growth. Nanomed Nanotechnol Biol Med. 2021;34: 102373.

    Article  CAS  Google Scholar 

  236. Ben Djemaa S, David S, Hervé-Aubert K, Falanga A, Galdiero S, Allard-Vannier E, et al. Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharm Biopharm. 2018;131:99–108.

    Article  CAS  PubMed  Google Scholar 

  237. Bruniaux J, Allard-Vannier E, Aubrey N, Lakhrif Z, Ben Djemaa S, Eljack S, et al. Magnetic nanocarriers for the specific delivery of siRNA: Contribution of breast cancer cells active targeting for down-regulation efficiency. Int J Pharm. 2019;569: 118572.

    Article  CAS  PubMed  Google Scholar 

  238. Nguyen PV, Hervé-Aubert K, David S, Lautram N, Passirani C, Chourpa I, et al. Targeted nanomedicine with anti-EGFR scFv for siRNA delivery into triple negative breast cancer cells. Eur J Pharm Biopharm. 2020;157:74–84.

    Article  CAS  PubMed  Google Scholar 

  239. Li T, Shen X, Chen Y, Zhang C, Yan J, Yang H, et al. Polyetherimide-grafted Fe3O4@SiO22 nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging. Int J Nanomed. 2015;10:4279–91.

    Article  CAS  Google Scholar 

  240. Lee JY, Crake C, Teo B, Carugo D, de Saint VM, Seth A, et al. Ultrasound-enhanced siRNA delivery using Magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets. Adv Healthc Mater. 2017;6(8):1601246.

    Article  Google Scholar 

  241. Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2019;99:1182–90.

    Article  CAS  PubMed  Google Scholar 

  242. Zhao Z, Li Y, Liu H, Jain A, Patel PV, Cheng K. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci Adv. 2020;6(29):eabb0616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Maurer V, Altin S, Ag Seleci D, Zarinwall A, Temel B, Vogt PM, et al. In-vitro application of magnetic hybrid niosomes: targeted siRNA-delivery for enhanced breast cancer therapy. Pharmaceutics. 2021;13(3):394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wan Y, Dai W, Nevagi RJ, Toth I, Moyle PM. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater. 2017;59:257–68.

    Article  CAS  PubMed  Google Scholar 

  245. Khodaei M, Rostamizadeh K, Taromchi AH, Monirinasab H, Fathi M. DDAB cationic lipid-mPEG, PCL copolymer hybrid nano-carrier synthesis and application for delivery of siRNA targeting IGF-1R into breast cancer cells. Clin Transl Oncol. 2021;23(6):1167–78.

    Article  CAS  PubMed  Google Scholar 

  246. Gote V, Pal D. Octreotide-Targeted Lcn2 siRNA PEGylated liposomes as a treatment for metastatic breast cancer. Bioengineering (Basel, Switzerland). 2021;8(4):44.

    CAS  PubMed  Google Scholar 

  247. Seidel ZP, Zhang X, MacMullan MA, Graham NA, Wang P, Lee CT Jr. Photo-triggered delivery of siRNA and paclitaxel into breast cancer cells using catanionic vesicles. ACS Appl Bio Mater. 2020;3(11):7388–98.

    Article  CAS  PubMed  Google Scholar 

  248. Wang Y, Xie Y, Kilchrist KV, Li J, Duvall CL, Oupický D. Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy. ACS Appl Mater Interfaces. 2020;12(4):4308–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Wang B, Yan N, Wu D, Dou Y, Liu Z, Hu X, et al. Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. Nanotechnology. 2021;32(39):395101.

    Article  CAS  Google Scholar 

  250. Shin JH, Shin DH, Kim JS. Let-7 miRNA and CDK4 siRNA co-encapsulated in Herceptin-conjugated liposome for breast cancer stem cells. Asian J Pharm Sci. 2020;15(4):472–81.

    Article  PubMed  Google Scholar 

  251. Luo K, Gao Y, Yin S, Yao Y, Yu H, Wang G, et al. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomater. 2021;134:649–63.

    Article  CAS  PubMed  Google Scholar 

  252. Zhuang J, Chen S, Hu Y, Yang F, Huo Q, Xie N. Tumour-targeted and redox-responsive mesoporous silica nanoparticles for controlled release of doxorubicin and an sirna against metastatic breast cancer. Int J Nanomed. 2021;16:1961–76.

    Article  Google Scholar 

  253. Xu X, Li L, Li X, Tao D, Zhang P, Gong J. Aptamer-protamine-siRNA nanoparticles in targeted therapy of ErbB3 positive breast cancer cells. Int J Pharm. 2020;590: 119963.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Afshin Taheriazam, Mehrdad Hashemi or Saeed Samarghandian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, S., Paskeh, M.D.A., Entezari, M. et al. siRNA and targeted delivery systems in breast cancer therapy. Clin Transl Oncol 25, 1167–1188 (2023). https://doi.org/10.1007/s12094-022-03043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03043-y

Keywords

Navigation