Skip to main content

Advertisement

Log in

Measurable residual disease study through three different methods can anticipate relapse and guide pre-emptive therapy in childhood acute myeloid leukemia

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Although outcomes of children with acute myeloid leukemia (AML) have improved over the last decades, around one-third of patients relapse. Measurable (or minimal) residual disease (MRD) monitoring may guide therapy adjustments or pre-emptive treatments before overt hematological relapse.

Methods

In this study, we review 297 bone marrow samples from 20 real-life pediatric AML patients using three MRD monitoring methods: multiparametric flow cytometry (MFC), fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR).

Results

Patients showed a 3-year overall survival of 73% and a 3-year event-free survival of 68%. Global relapse rate was of 25%. All relapses were preceded by the reappearance of MRD detection by: (1) MFC (p = 0.001), (2) PCR and/or FISH in patients with an identifiable chromosomal translocation (p = 0.03) and/or (3) one log increase of Wilms tumor gene 1 (WT1) expression in two consecutive samples (p = 0.02). The median times from MRD detection to relapse were 26, 111, and 140 days for MFC, specific PCR and FISH, and a one log increment of WT1, respectively.

Conclusions

MFC, FISH and PCR are complementary methods that can anticipate relapse of childhood AML by weeks to several months. However, in our series, pre-emptive therapies were not able to prevent disease progression. Therefore, more sensitive MRD monitoring methods that further anticipate relapse and more effective pre-emptive therapies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Elgarten CW, Aplenc R. Pediatric acute myeloid leukemia: updates on biology, risk stratification, and therapy. Curr Opin Pediatr. 2020;32(1):57–66.

    Article  PubMed  Google Scholar 

  2. Langebrake C, Creutzig U, Dworzak M, Hrusak O, Mejstrikova E, Griesinger F, et al. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. J Clin Oncol. 2006;24(22):3686–92.

    Article  PubMed  Google Scholar 

  3. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tierens A, Bjørklund E, Siitonen S, Marquart HV, Wulff-Juergensen G, Pelliniemi TT, et al. Residual disease detected by flow cytometry in an independent predictor of survival in childhood acute myeloid leukemia; results of the NOPHO-AML 2004 study. Br J Haematol. 2016;174(4):600–9.

    Article  PubMed  Google Scholar 

  5. Leung W, Pui CH, Coustan-Smith E, Yang J, Pei D, Gan K, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very high risk leukemia. Blood. 2012;120(2):468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buckley SA, Wood BL, Othus M, Hourigan CS, Ustun C, Linden MA, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102(5):865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benetton M, Merli P, Walter C, Hansen M, Da Ros A, Polato K, et al. Molecular measurable residual disease assessment before hematopoietic stem cell transplantation in pediatric acute myeloid leukemia patients: a retrospective study by the I-BFM study group. Biomedicines. 2022;10(7):1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sievers EL, Lange BJ, Buckley JD, Smith FO, Wells DA, Daigneault-Creech CA, et al. Prediction of relapse of pediatric acute myeloid leukemia by use of flow multidimensional flow cytometry. J Natl Cancer Inst. 1996;88(20):1483–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ommen HS. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol. 2016;7(1):3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kern W, Bacher U, Haferlach C, Schnittger S, Haferlach T. The role of multiparameter flow cytometry for disease monitoring in AML. Best Pract Res Clin Haematol. 2010;23(3):379–90.

    Article  CAS  PubMed  Google Scholar 

  11. Terwijn M, van Putten WLJ, Kelder A, van der Velderi VHJ, Brooimans RA, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97.

    Article  PubMed  Google Scholar 

  12. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27:95–125.

    Article  CAS  PubMed  Google Scholar 

  13. Ehinger M, Petterson L. Measurable residual disease testing for personalized treatment of acute myeloid leukemia. APMIS. 2019;127(5):337–51.

    Article  PubMed  Google Scholar 

  14. Vettenranta K, Autio K, Hovi L, Knuutila S, Saarinen-Pihkala UM. Follow-up of minimal residual disease in pediatric acute myeloblastic leukemia using metaphase-FISH. Leuk Lymphoma. 2002;43(6):1261–5.

    Article  CAS  PubMed  Google Scholar 

  15. Harrison CJ, Hills RK, Moorman AV, Grimwade DJ, Hann I, Webb DKH, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom medical research council treatment trials AML 10 and 12. J Clin Oncol. 2010;28(16):2674–81.

    Article  PubMed  Google Scholar 

  16. Von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010;28(16):2682–9.

    Article  Google Scholar 

  17. Meyer C, Burmeister T, Gröger D, Tsaur G, Fechina L, Rennevile A, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273–84.

    Article  CAS  PubMed  Google Scholar 

  18. Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114(12):2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Zhang L, Li Y, Gu H, Wang X. SET-CAN fusion gene in leukemia and myeloid neoplasms: report of three cases and a literature review. Onco Targets Ter. 2020;13:7665–81.

    Article  Google Scholar 

  20. Ozbek U, Kandilci A, van Baal S, Bonten J, Boyd K, Franken P, et al. SET-CAN, the product of the t(9;9) in acute undifferentiated leukemia, causes expansion of early hematopoietic progenitors and hyperproliferation of stomach mucosa in transgenic mice. Am J Pathol. 2007;171(2):654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Menssen HD, Renkl H-J, Rodeck U, Maurer J, Notter M, Schwartz S, et al. Presence of Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia. 1995;9(6):1060–7.

    CAS  PubMed  Google Scholar 

  22. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115–21.

    Article  CAS  PubMed  Google Scholar 

  23. Pozzi S, Geroldi S, Tedone E, Luchetti S, Grasso R, Colombo N, et al. Leukemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role of WT1 expression. Br J Haematol. 2013;160(4):503–9.

    Article  PubMed  Google Scholar 

  24. Rossi G, Minervini MM, Carella AM, de Waure C, di Nardo F, Melillo L, et al. Comparison between multiparameter flow cytometry and WT1-RNA quantification in monitoring minimal residual disease in acute myeloid leukemia without specific molecular targets. Leuk Res. 2012;36(4):401–6.

    Article  CAS  PubMed  Google Scholar 

  25. Patriarca F, Sperotto A, Lorentino F, Oldani E, Mammoliti S, Isola M, et al. Donor lymphocyte infusions after allogeneic stem cell transplantation in acute leukemia: a survey from the Gruppo italiano trapianto midollo osseo (GITMO). Front Oncol. 2020;10: 572918.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Platzbecker U, Middeke JM, Socke K, Herbst R, Wolf D, Baldus CD, et al. Measurable residual disease-guided treatment with azatidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA 2): an open-label, multicentre, phase 2 trial. Lancet Oncol. 2018;19(12):1668–79.

    Article  CAS  PubMed  Google Scholar 

  27. Elmaagacli AH, Beelen DW, Trenn G, Schmidt O, Nahler M, Schaefer UW. Induction of a graft-versus-leukemia reaction by cyclosporin A withdrawal as immunotherapy for leukemia relapsing after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1999;23:771–7.

    Article  CAS  PubMed  Google Scholar 

  28. Guo M, Hu KX, Liu GX, Yu CL, Qiao JH, Sun QY, et al. HLA-mismatched stem-cell microtransplatation as postremission therapy for acute myeloid leukemia: long-term follow up. J Clin Oncol. 2012;30(33):4084–90.

    Article  PubMed  Google Scholar 

  29. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. Classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer; 2008.

    Google Scholar 

  30. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer; 2017.

  31. Minguela A, Vasco-Mogorrón MA, Campillo JA, Cabañas V, Remigia MJ, Berenguer M, et al. Predictive value of 1q21 gain in multiple myeloma is strongly dependent on concurrent cytogenetic abnormalities and first-line treatment. Am J Cancer Res. 2021;11(9):4438–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schuurhuis GJ, Heuser M, Freeman S, Béné MC, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD working party. Blood. 2018;131(12):1275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyamoto T, Nagafuji K, Akashi K, Harada M, Kyo T, Akashi T, et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood. 1996;87(11):4789–96.

    Article  CAS  PubMed  Google Scholar 

  34. Hatlen M, Wang L, Nimer S. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med. 2012;6(3):248–62.

    Article  PubMed  Google Scholar 

  35. Matsuo H, Iijima-Yamashita Y, Yamada M, Deguchi T, Kiyokawa N, Shimada A, et al. Monitoring of fusion gene transcripts to predict relapse in pediatric acute myeloid leukemia. Pediatr Int. 2018;60(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  36. Juul-Dam KL, Ommen HB, Nyvold CG, Walter C, Vålerhugen H, Kairisto V, et al. Measurable residual disease assessment by qPCR in peripheral blood is an informative tool for disease surveillance in childhood acute myeloid leukaemia. Br J Haematol. 2020;190(2):198–208.

    Article  CAS  PubMed  Google Scholar 

  37. Maurer U, Brieger J, Weidmann E, Mitrou PS, Hoelzer D, Bergmann L. The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp Hematol. 1997;25(9):945–50.

    CAS  PubMed  Google Scholar 

  38. Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T, et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia. 2005;19(8):1416–23.

    Article  CAS  PubMed  Google Scholar 

  39. Mashima K, Oh I, Ikeda T, Toda Y, Ito S, Umino K, et al. Role of sequential monitoring of WT1 gene expression in patients with acute myeloid leukemia for the early detection of leukemia relapse. Clin Lymphoma Myeloma Leuk. 2018;18(12):521–7.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the hematologists involved in the bone marrow transplantation of patients Drs. José María Moraleda, Andrés Sánchez-Salinas, Joaquín Gómez-Espuch and Jorge Montserrat Coll, nurses and other healthcare members from the pediatric hematology and oncology department, laboratory technicians María Carmen Martínez Solano and María Dolores García Arnao, and especially to all patients and families.

Funding

The researcher M.V.M.S. was funded by Asociación Pablo Ugarte (APU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Minguela.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

The study was performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all patients (and/or their parents) in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Supplementary file2 (DOCX 302 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos Elbal, E., Fuster, J.L., Campillo, J. et al. Measurable residual disease study through three different methods can anticipate relapse and guide pre-emptive therapy in childhood acute myeloid leukemia. Clin Transl Oncol 25, 1446–1454 (2023). https://doi.org/10.1007/s12094-022-03042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03042-z

Keywords

Navigation