Skip to main content
Log in

Inhibition of the B7-H3 immune checkpoint limits hepatocellular carcinoma progression by enhancing T lymphocyte-mediated immune cytotoxicity in vitro and in vivo

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The interaction between tumor cells and immune system in hepatocellular carcinoma (HCC) remains unclear. Great clinical achievements have progressed in HCC patients treated with immune checkpoint inhibitors (ICIs) for programmed death-1 and its ligands. However, response efficacy for these therapies is limited, thereby requiring alternative ICI candidates for HCC treatment. B7 homolog 3 protein (B7-H3), an immunoregulatory protein, plays a significant role in tumor immunity and disease progression. In this study, we evaluated the correlation between B7-H3 expression and prognosis of HCC patients, and investigated the therapeutic potential of B7-H3 targeting in HCC.

Methods

B7-H3 expression was analyzed immunohistochemically in HCC patients, and its relationship with tumor-infiltrating lymphocyte infiltration was assessed. The anti-tumor efficacy of anti-B7-H3 antibody therapy was determined using an in vitro co-culture system and a subcutaneous HCC-bearing murine model.

Results

We found that B7-H3 overexpressed in tumor cells and positively correlated with poor prognosis in HCC patients. B7-H3 inhibited the infiltration of CD8+ T cells in tumors. Furthermore, co-culture experiment indicated that inhibiting B7-H3 in tumor cells significantly increased T cells-mediated immune activities and tumor cell killing. Consistently, anti-B7-H3 antibody-treated HCC murine model showed decreased tumor size and enhanced anti-tumor immunity mediated by CD8+ T cells.

Conclusion

Altogether, our findings suggest that B7-H3 inhibition in tumor cells restores the immune cytotoxicity of T cells, which in turn promotes apoptosis of target cells. Therefore, B7-H3 serves as a key negative regulator in tumor immunity and the promising clinical utility of B7-H3-based immunotherapies for HCC treatment could be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to the further study required.

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Braillon A. Hepatocellular carcinoma. Lancet. 2012;380(9840):469–70.

    Article  PubMed  Google Scholar 

  3. Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184(2):404–21.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179(4):829–45.

    Article  CAS  PubMed  Google Scholar 

  5. Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–72.

    Article  CAS  PubMed  Google Scholar 

  6. Fong L, Small EJ. Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol. 2008;26(32):5275–83.

    Article  CAS  PubMed  Google Scholar 

  7. McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013;2(5):662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boorjian SA, Sheinin Y, Crispen PL, Farmer SA, Lohse CM, Kuntz SM, et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res. 2008;14(15):4800–8.

    Article  CAS  PubMed  Google Scholar 

  10. Martin-Orozco N, Dong C. Inhibitory costimulation and anti-tumor immunity. Semin Cancer Biol. 2007;17(4):288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ni L, Dong C. New checkpoints in cancer immunotherapy. Immunol Rev. 2017;276(1):52–65.

    Article  CAS  PubMed  Google Scholar 

  12. Carbunaru S, Nettey OS, Gogana P, Helenowski IB, Jovanovic B, Ruden M, et al. A comparative effectiveness analysis of the PBCG vs. PCPT risks calculators in a multi-ethnic cohort. BMC Urol. 2019;19(1):121.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang W, Wang J, Wang Y, Dong F, Zhu M, Wan W, et al. B7–H3 silencing by RNAi inhibits tumor progression and enhances chemosensitivity in U937 cells. Onco Targets Ther. 2015;8:1721–33.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao X, Zhang GB, Gan WJ, Xiong F, Li Z, Zhao H, et al. Silencing of B7–H3 increases gemcitabine sensitivity by promoting apoptosis in pancreatic carcinoma. Oncol Lett. 2013;5(3):805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hofmeyer KA, Ray A, Zang X. The contrasting role of B7–H3. Proc Natl Acad Sci U S A. 2008;105(30):10277–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee YH, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, et al. Inhibition of the B7–H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017;27(8):1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, et al. B7–H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis. 2020;11(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kendsersky NM, Lindsay J, Kolb EA, Smith MA, Teicher BA, Erickson SW, et al. The B7-H3-targeting antibody-drug conjugate m276-SL-PBD is potently effective against pediatric cancer preclinical solid tumor models. Clin Cancer Res. 2021;27(10):2938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun M, Xie J, Zhang D, Chen C, Lin S, Chen Y, et al. B7–H3 inhibits apoptosis of gastric cancer cell by interacting with Fibronectin. J Cancer. 2021;12(24):7518–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qi J, Zhou Z, Lim CW, Kim JW, Kim B. Amlexanox ameliorates acetaminophen-induced acute liver injury by reducing oxidative stress in mice. Toxicol Appl Pharmacol. 2019;385: 114767.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, et al. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett. 2021;342:58–72.

    Article  CAS  PubMed  Google Scholar 

  22. Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R, et al. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin Cancer Res. 2019;25(2):515–23.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu JL, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 2019;68(9):1653–66.

    Article  CAS  PubMed  Google Scholar 

  24. Qi X, Wu F, Kim SH, Kaifi JT, Kimchi ET, Snyder H, et al. Nanoliposome C6-Ceramide in combination with anti-CTLA4 antibody improves anti-tumor immunity in hepatocellular cancer. Faseb j. 2022;36(4): e22250.

    Article  CAS  PubMed  Google Scholar 

  25. Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, et al. The B7 family member B7–H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol. 2003;4(9):899–906.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang GB, Chen YJ, Shi Q, Ma HB, Ge Y, Wang Q, et al. Human recombinant B7–H3 expressed in E. coli enhances T lymphocyte proliferation and IL-10 secretion in vitro. Acta Biochim Biophys Sin (Shanghai). 2004;36(6):430–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chen X, Quinn EM, Ni H, Wang J, Blankson S, Redmond HP, et al. B7–H3 participates in the development of experimental pneumococcal meningitis by augmentation of the inflammatory response via a TLR2-dependent mechanism. J Immunol. 2012;189(1):347–55.

    Article  CAS  PubMed  Google Scholar 

  28. Luo L, Zhu G, Xu H, Yao S, Zhou G, Zhu Y, et al. B7–H3 Promotes pathogenesis of autoimmune disease and inflammation by regulating the activity of different T cell subsets. PLoS ONE. 2015;10(6): e0130126.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Fraser CC, Kikly K, Wells AD, Han R, Coyle AJ, et al. B7–H3 promotes acute and chronic allograft rejection. Eur J Immunol. 2005;35(2):428–38.

    Article  CAS  PubMed  Google Scholar 

  30. Prasad DV, Nguyen T, Li Z, Yang Y, Duong J, Wang Y, et al. Murine B7–H3 is a negative regulator of T cells. J Immunol. 2004;173(4):2500–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ueno T, Yeung MY, McGrath M, Yang S, Zaman N, Snawder B, et al. Intact B7–H3 signaling promotes allograft prolongation through preferential suppression of Th1 effector responses. Eur J Immunol. 2012;42(9):2343–53.

    Article  CAS  PubMed  Google Scholar 

  32. Veenstra RG, Flynn R, Kreymborg K, McDonald-Hyman C, Saha A, Taylor PA, et al. B7–H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality. Blood. 2015;125(21):3335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun X, Vale M, Leung E, Kanwar JR, Gupta R, Krissansen GW. Mouse B7–H3 induces antitumor immunity. Gene Ther. 2003;10(20):1728–34.

    Article  CAS  PubMed  Google Scholar 

  34. Lupu CM, Eisenbach C, Lupu AD, Kuefner MA, Hoyler B, Stremmel W, et al. Adenoviral B7–H3 therapy induces tumor specific immune responses and reduces secondary metastasis in a murine model of colon cancer. Oncol Rep. 2007;18(3):745–8.

    CAS  PubMed  Google Scholar 

  35. Luo L, Chapoval AI, Flies DB, Zhu G, Hirano F, Wang S, et al. B7–H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol. 2004;173(9):5445–50.

    Article  CAS  PubMed  Google Scholar 

  36. Kreymborg K, Haak S, Murali R, Wei J, Waitz R, Gasteiger G, et al. Ablation of B7–H3 but Not B7–H4 results in highly increased tumor burden in a murine model of spontaneous prostate cancer. Cancer Immunol Res. 2015;3(8):849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mao Y, Li W, Chen K, Xie Y, Liu Q, Yao M, et al. B7–H1 and B7–H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget. 2015;6(5):3452–61.

    Article  PubMed  Google Scholar 

  38. Lim S, Liu H, Madeira da Silva L, Arora R, Liu Z, Phillips JB, et al. Immunoregulatory protein B7–H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α. Cancer Res. 2016;76(8):2231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang FB, Wang L, Li D, Zhang YG, Sun DX. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7–H3 expression. Oncol Rep. 2015;33(1):274–82.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng Y, Liao N, Wu Y, Gao J, Li Z, Liu W, et al. High expression of B7–H2 or B7–H3 is associated with poor prognosis in hepatocellular carcinoma. Mol Med Rep. 2019;19(5):4315–25.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by [Natural Science Foundation of Fujian Province] grant number [2018J01835; 2022J01202] (W.Z.) and [Natural Science Foundation of Fujian Province] grant number [2020J01605] (L.C.).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived and designed by WZ; XY, YC, XT, WL, and WH performed the experiments; ZZ and WZ wrote the manuscript; ZZ and WZ provided guidance on the study; HC and WZ supervised the research and contributed to the critical review and final approval of the manuscript.

Corresponding authors

Correspondence to Lihong Chen or Wenmin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research on human specimens was approved by the human research ethics committee of the Fujian Medical University, China (ethical code: FJMU IACUC 2019–45). The animal study was approved by the animal research ethics committee of the Fujian Medical University, China (ethical code: IACUC FJMU 2022–0601), and the corresponding regulatory agencies, and all experiments were carried out following approved guidelines.

Informed consent

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yu, X., Chen, Y. et al. Inhibition of the B7-H3 immune checkpoint limits hepatocellular carcinoma progression by enhancing T lymphocyte-mediated immune cytotoxicity in vitro and in vivo. Clin Transl Oncol 25, 1067–1079 (2023). https://doi.org/10.1007/s12094-022-03013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03013-4

Keywords

Navigation