Skip to main content

Advertisement

Log in

Suppression of CD56bright NK cells in breast cancer patients is associated with the PD-1 and TGF-βRII expression

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Natural killer (NK) cells, as professional cytotoxic cells, play a key role against cancer in the early and metastatic stages. Their functional defects are highly associated with the initiation or progression of breast cancer (BC). Here, we investigated the phenotypic characterization of NK cells in 26 newly diagnosed BC patients in comparison to 12 healthy counterparts.

Methods

Expression of CXCR3 and PD-1, and also NKG2D, and TGF-βRII were studied on CD56dim and CD56bright NK cells from fresh peripheral blood (PB) samples using flow cytometry. The plasma levels of IFN-γ and soluble MIC-A levels were also assessed by ELISA.

Results

Both CD56dim and CD56bright NK subtypes showed lower CXCR3 and NKG2D expression in BC patients than healthy subjects. Furthermore, patients’ CD56bright NK cells significantly showed higher expression levels of TGF-βRII and PD-1. Interestingly, increased concentration of MIC-A level in plasma of BC patients was associated with the higher TGF-βRII and PD-1 expression in all NK cells, while the plasma level of IFN-γ was associated with the lower TGF-βRII expression on CD56bright NK cells in these patients.

Conclusion

Our results demonstrated phenotypically suppressed-NK cells, especially in the CD56bright subset of BC patients. It specifies their potential incompetence and outlines decrement of their anti-tumor activity, which could be interrelated with the tumor pathogenesis, TME immunosuppression, and so disease progression. The induction of compensatory mechanisms revives NK cells function and could be used in combination with the conventional treatments as a putative therapeutic approach for targeted immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PB:

Peripheral blood

NK cell:

Natural killer cell

BC:

Breast cancer

NKG2D:

Natural killer group 2D

CXCR3:

C-X-C motif chemokine receptor 3

PD-1:

Programmed death receptor-1

TGF-βRII:

Transforming growth factor beta receptor II

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Xiang YJ, Fu QY, Ma ZB, Gao DZ, Zhang Q, Li YY, et al. Screening for candidate genes related to breast cancer with cDNA microarray analysis. Chronic Dis Transl Med. 2015;1(2):65–72. https://doi.org/10.1016/j.cdtm.2015.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer. 2018;18(1):556. https://doi.org/10.1186/s12885-018-4441-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arianfar E, Shahgordi S, Memarian A. Natural killer cell defects in breast cancer: a key pathway for tumor evasion. Int Rev Immunol. 2021;40(3):197–216. https://doi.org/10.1080/08830185.2020.1845670.

    Article  CAS  PubMed  Google Scholar 

  5. Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol. 2019;10:3038. https://doi.org/10.3389/fimmu.2019.03038.

    Article  CAS  PubMed  Google Scholar 

  6. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer. 2000;88(3):577–83. https://doi.org/10.1002/(SICI)1097-0142(20000201)88:3%3c577::AID-CNCR13%3e3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  7. Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 1997;79(12):2320–8. https://doi.org/10.1002/(sici)1097-0142(19970615)79:12%3c2320::aid-cncr5%3e3.0.co;2-p.

    Article  CAS  PubMed  Google Scholar 

  8. Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 2015;47(2): e141. https://doi.org/10.1038/emm.2014.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dezell SA, Ahn YO, Spanholtz J, Wang H, Weeres M, Jackson S, et al. Natural killer cell differentiation from hematopoietic stem cells: a comparative analysis of heparin-and stromal cell-supported methods. Biol Blood Marrow Transplant. 2012;18(4):536–45. https://doi.org/10.1016/j.bbmt.2011.11.023.

    Article  CAS  PubMed  Google Scholar 

  10. Mah AY, Cooper MA. Metabolic regulation of natural killer cell IFN-γ production. Crit Rev Immunol. 2016;36(2):131–47. https://doi.org/10.1615/CritRevImmunol.2016017387.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Amand M, Iserentant G, Poli A, Sleiman M, Fievez V, Sanchez IP, et al. Human CD56dimCD16dim cells as an individualized natural killer cell subset. Front Immunol. 2017;8:699. https://doi.org/10.3389/fimmu.2017.00699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M, et al. Human CD56bright NK cells: an update. J Immunol. 2016;196(7):2923–31. https://doi.org/10.4049/jimmunol.1502570.

    Article  CAS  PubMed  Google Scholar 

  13. Fernández-Messina L, Reyburn HT, Valés-Gómez M. Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front Immunol. 2012;3:299. https://doi.org/10.3389/fimmu.2012.00299.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mistry AR, O’Callaghan CA. Regulation of ligands for the activating receptor NKG2D. Immunology. 2007;121(4):439–47. https://doi.org/10.1111/j.1365-2567.2007.02652.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3(10):781–90. https://doi.org/10.1038/nri1199.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Y, Chen N, Yu Y, Zhou L, Niu C, Liu Y, et al. Prognostic value of MICA/B in cancers: a systematic review and meta-analysis. Oncotarget. 2017;8(56):96384–95. https://doi.org/10.18632/oncotarget.21466.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8. https://doi.org/10.1038/85330.

    Article  CAS  PubMed  Google Scholar 

  18. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  PubMed  Google Scholar 

  19. Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol. 2017;139(1):335-46.e3. https://doi.org/10.1016/j.jaci.2016.04.025.

    Article  CAS  PubMed  Google Scholar 

  20. Pesce S, Greppi M, Grossi F, Del Zotto G, Moretta L, Sivori S, et al. PD/1-PD-Ls checkpoint: insight on the potential role of NK cells. Front Immunol. 2019;10:1242. https://doi.org/10.3389/fimmu.2019.01242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beldi-Ferchiou A, Lambert M, Dogniaux S, Vély F, Vivier E, Olive D, et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget. 2016;7(45):72961–77. https://doi.org/10.18632/oncotarget.12150.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Benson DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116(13):2286–94. https://doi.org/10.1182/blood-2010-02-271874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene. 2017;36(44):6143–53. https://doi.org/10.1038/onc.2017.209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garrod KR, Wei SH, Parker I, Cahalan MD. Natural killer cells actively patrol peripheral lymph nodes forming stable conjugates to eliminate MHC-mismatched targets. Proc Natl Acad Sci. 2007;104(29):12081–6. https://doi.org/10.1073/pnas.0702867104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 2008;68(20):8437–45. https://doi.org/10.1158/0008-5472.CAN-08-1440.

    Article  CAS  PubMed  Google Scholar 

  26. Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 2011;89(2):207–15. https://doi.org/10.1038/icb.2010.158.

    Article  CAS  PubMed  Google Scholar 

  27. Wennerberg E, Pfefferle A, Ekblad L, Yoshimoto Y, Kremer V, Kaminskyy VO, et al. Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells. Clin Cancer Res. 2014;20(22):5733–44. https://doi.org/10.1158/1078-0432.CCR-14-0291.

    Article  CAS  PubMed  Google Scholar 

  28. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146. https://doi.org/10.1146/annurev.immunol.24.021605.090737.

    Article  CAS  PubMed  Google Scholar 

  29. Slattery K, Zaiatz-Bittencourt V, Woods E, Brennan K, Marks S, Chew S, et al. TGFβ drives mitochondrial dysfunction in peripheral blood NK cells during metastatic breast cancer. Biorxiv. 2019. https://doi.org/10.1101/648501.

    Article  Google Scholar 

  30. Allan DS, Rybalov B, Awong G, Zúñiga-Pflücker JC, Kopcow HD, Carlyle JR, et al. TGF-β affects development and differentiation of human natural killer cell subsets. Eur J Immunol. 2010;40(8):2289–95. https://doi.org/10.1002/eji.200939910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sheen-Chen SM, Chen HS, Sheen CW, Eng HL, Chen WJ. Serum levels of transforming growth factor beta1 in patients with breast cancer. Arch Surg. 2001;136(8):937–40. https://doi.org/10.1001/archsurg.136.8.937.

    Article  CAS  PubMed  Google Scholar 

  32. Viel S, Marçais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9(415):ra19. https://doi.org/10.1126/scisignal.aad1884.

    Article  CAS  PubMed  Google Scholar 

  33. Mohammadi S, Ebadpour MR, Sedighi S, Saeedi M, Memarian A. Glucocorticoid-induced leucine zipper expression is associated with response to treatment and immunoregulation in systemic lupus erythematosus. Clin Rheumatol. 2017;36(8):1765–72. https://doi.org/10.1007/s10067-017-3711-9.

    Article  PubMed  Google Scholar 

  34. Ajam F, Aghaei M, Mohammadi S, Samiei H, Behnampour N, Memarian A. PD-1 expression on CD8+CD28- T cells within inflammatory synovium is associated with relapse: a cohort of rheumatoid arthritis. Immunol Lett. 2020;228:76–82. https://doi.org/10.1016/j.imlet.2020.10.005.

    Article  CAS  PubMed  Google Scholar 

  35. Caras I, Grigorescu A, Stavaru C, Radu DL, Mogos I, Szegli G, et al. Evidence for immune defects in breast and lung cancer patients. Cancer Immunol Immunother. 2004;53(12):1146–52. https://doi.org/10.1007/s00262-004-0556-2.

    Article  CAS  PubMed  Google Scholar 

  36. Nieto-Velázquez NG, Torres-Ramos YD, Muñoz-Sánchez JL, Espinosa-Godoy L, Gómez-Cortés S, Moreno J, et al. Altered expression of natural cytotoxicity receptors and NKG2D on peripheral blood NK cell subsets in breast cancer patients. Transl Oncol. 2016;9(5):384–91. https://doi.org/10.1016/j.tranon.2016.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mamessier E, Pradel LC, Thibult ML, Drevet C, Zouine A, Jacquemier J, et al. Peripheral blood NK cells from breast cancer patients are tumor-induced composite subsets. J Immunol. 2013;190(5):2424–36. https://doi.org/10.4049/jimmunol.1200140.

    Article  CAS  PubMed  Google Scholar 

  38. Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121(9):3609–22. https://doi.org/10.1172/JCI45816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ostapchuk YO, Cetin EA, Perfilyeva YV, Yilmaz A, Skiba YA, Chirkin AP, et al. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-β in healthy donors and breast cancer patients. Cell Immunol. 2015;298(1–2):37–46. https://doi.org/10.1016/j.cellimm.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  40. Gharagozloo M, Kalantari H, Rezaei A, Maracy MR, Salehi M, Bahador A, et al. The decrease in NKG2D+ natural killer cells in peripheral blood of patients with metastatic colorectal cancer. Bratisl Lek Listy. 2015;116(5):296–301. https://doi.org/10.4149/bll_2015_056.

    Article  CAS  PubMed  Google Scholar 

  41. Sun B, Yang D, Dai H, Liu X, Jia R, Cui X, et al. Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells. Cancer Immunol Res. 2019;7(11):1813–23. https://doi.org/10.1158/2326-6066.CIR-19-0026.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Li X, Zhang J, Mao L. Novel cellular immunotherapy using NKG2D CAR-T for the treatment of cervical cancer. Biomed Pharmacother. 2020;131: 110562. https://doi.org/10.1016/j.biopha.2020.110562.

    Article  CAS  PubMed  Google Scholar 

  43. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity. 2008;28(4):571–80. https://doi.org/10.1016/j.immuni.2008.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D ligands in immuno-oncology. Front Immunol. 2021;12: 713158. https://doi.org/10.3389/fimmu.2021.713158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saito H, Osaki T, Ikeguchi M. Decreased NKG2D expression on NK cells correlates with impaired NK cell function in patients with gastric cancer. Gastric Cancer. 2012;15(1):27–33. https://doi.org/10.1007/s10120-011-0059-8.

    Article  CAS  PubMed  Google Scholar 

  46. Shen J, Pan J, Du C, Si W, Yao M, Xu L, et al. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis. 2017;8(4): e2740. https://doi.org/10.1038/cddis.2017.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmiedel D, Mandelboim O. NKG2D ligands-critical targets for cancer immune escape and therapy. Front Immunol. 2018;9:2040. https://doi.org/10.3389/fimmu.2018.02040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Kruijf EM, Sajet A, van Nes JG, Putter H, Smit VT, Eagle RA, et al. NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer. 2012;12:24. https://doi.org/10.1186/1471-2407-12-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Molfetta R, Quatrini L, Santoni A, Paolini R. Regulation of NKG2D-dependent NK cell functions: the Yin and the Yang of receptor endocytosis. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18081677.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hilpert J, Grosse-Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. J Immunol. 2012;189(3):1360–71. https://doi.org/10.4049/jimmunol.1200796.

    Article  CAS  PubMed  Google Scholar 

  51. Aquino-López A, Senyukov VV, Vlasic Z, Kleinerman ES, Lee DA. Interferon gamma induces changes in natural killer (NK) cell ligand expression and alters NK cell-mediated lysis of pediatric cancer cell lines. Front Immunol. 2017;8:391. https://doi.org/10.3389/fimmu.2017.00391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. Natural killer cell-produced IFN-γ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol. 2012;91(2):299–309. https://doi.org/10.1189/jlb.0611308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quatrini L, Mariotti FR, Munari E, Tumino N, Vacca P, Moretta L. The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12113285.

    Article  PubMed  Google Scholar 

  54. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki IM, et al. PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Front Immunol. 2019;10:630. https://doi.org/10.3389/fimmu.2019.00630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qiu Y, Yang Y, Yang R, Liu C, Hsu J-M, Jiang Z, et al. Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene. 2021;40(31):4992–5001. https://doi.org/10.1038/s41388-021-01896-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131(16):1809–19. https://doi.org/10.1182/blood-2017-07-796342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ardolino M, Azimi CS, Iannello A, Trevino TN, Horan L, Zhang L, et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest. 2014;124(11):4781–94. https://doi.org/10.1172/JCI74337.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Slattery K, Woods E, Zaiatz-Bittencourt V, Marks S, Chew S, Conroy M, et al. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-002044.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zaiatz-Bittencourt V, Finlay DK, Gardiner CM. Canonical TGF-β signaling pathway represses human NK cell metabolism. J Immunol. 2018;200(12):3934–41. https://doi.org/10.4049/jimmunol.1701461.

    Article  CAS  PubMed  Google Scholar 

  60. Nagaraj NS, Datta PK. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs. 2010;19(1):77–91. https://doi.org/10.1517/13543780903382609.

    Article  CAS  PubMed  Google Scholar 

  61. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U S A. 2003;100(7):4120–5. https://doi.org/10.1073/pnas.0730640100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu J, Wei M, Becknell B, Trotta R, Liu S, Boyd Z, et al. Pro-and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity. 2006;24(5):575–90. https://doi.org/10.1016/j.immuni.2006.03.016.

    Article  CAS  PubMed  Google Scholar 

  63. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736–50. https://doi.org/10.1093/jnci/djp082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Regis S, Dondero A, Caliendo F, Bottino C, Castriconi R. NK cell function regulation by TGF-β-induced epigenetic mechanisms. Front Immunol. 2020;11:311. https://doi.org/10.3389/fimmu.2020.00311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Riggan L, Shah S, O’Sullivan TE. Arrested development: suppression of NK cell function in the tumor microenvironment. Clin Transl Immunology. 2021;10(1): e1238. https://doi.org/10.1002/cti2.1238.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bonanni V, Antonangeli F, Santoni A, Bernardini G. Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells. J Immunother Cancer. 2019;7(1):290. https://doi.org/10.1186/s40425-019-0751-5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nersesian S, Schwartz SL, Grantham SR, MacLean LK, Lee SN, Pugh-Toole M, et al. NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl Oncol. 2021;14(1): 100930. https://doi.org/10.1016/j.tranon.2020.100930.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang S, Liu W, Hu B, Wang P, Lv X, Chen S, et al. Prognostic significance of tumor-infiltrating natural killer cells in solid tumors: a systematic review and meta-analysis. Front Immunol. 2020;11:1242. https://doi.org/10.3389/fimmu.2020.01242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wuest TR, Carr DJ. Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 infection. J Immunol. 2008;181(11):7985–93. https://doi.org/10.4049/jimmunol.181.11.7985.

    Article  CAS  PubMed  Google Scholar 

  70. Kajitani K, Tanaka Y, Arihiro K, Kataoka T, Ohdan H. Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat. 2012;134(1):139–55. https://doi.org/10.1007/s10549-011-1944-x.

    Article  PubMed  Google Scholar 

  71. Ejaeidi AA, Craft BS, Puneky LV, Lewis RE, Cruse JM. Hormone receptor-independent CXCL10 production is associated with the regulation of cellular factors linked to breast cancer progression and metastasis. Exp Mol Pathol. 2015;99(1):163–72. https://doi.org/10.1016/j.yexmp.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  72. Walser TC, Ma X, Kundu N, Dorsey R, Goloubeva O, Fulton AM. Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model. J Immunother. 2007;30(5):490–8. https://doi.org/10.1097/CJI.0b013e318031b551.

    Article  CAS  PubMed  Google Scholar 

  73. Hart OM, Athie-Morales V, O’Connor GM, Gardiner CM. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol. 2005;175(3):1636–42. https://doi.org/10.4049/jimmunol.175.3.1636.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article was granted by Iran National Science Foundation (INSF) 0.13039/501100003968, with Grant No. 96010101 and Golestan University of Medical Sciences with Grant No. 110632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Memarian.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was approved by the ethics committee of Golestan University of Medical Sciences (No: IR.GOUMS.REC.1398.020).

Informed consent

Written informed consent following the Declaration of Helsinki was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12094_2022_2997_MOESM1_ESM.tif

Supplementary file1. Phenotypic analysis of TGF-βRII, NKG2D, PD-1, and CXCR3 on peripheral blood. CD56dim NK cells (A) and CD56bright NK cells (B) in BC patients. Flow cytometry data are presented as mean fluorescence intensity (MFI) of TGF-βRII+, NKG2D+, PD-1+, and CXCR3+ NK cells in 26 BC patients and 12 healthy donors. Analysis was performed using the independent sample T-test. p-values lower than 0.05 were considered statistically significant. Data of each bar demonstrates means ±SE. NS= not significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (TIF 4839 KB)

Supplementary file2 (DOCX 2175 KB)

Supplementary file3 (DOCX 2166 KB)

Supplementary file4 (DOCX 3031 KB)

Supplementary file5 (DOCX 2179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arianfar, E., Khandoozi, S.R., Mohammadi, S. et al. Suppression of CD56bright NK cells in breast cancer patients is associated with the PD-1 and TGF-βRII expression. Clin Transl Oncol 25, 841–851 (2023). https://doi.org/10.1007/s12094-022-02997-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02997-3

Keywords

Navigation