Skip to main content
Log in

The diagnostic role and mechanistic functions of exosomal lncRNAs in prostate cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Exosomes are small membrane-enclosed vesicles that are released by most living cells and harbor a diverse array of proteins, nucleic acids, and lipid cargos. These exosomes offer valuable biomarkers that may offer insights regarding as a range of physiological and pathological processes, including immune responses, cancer development, pregnancy, and diseases of the central nervous system. With the development of high-throughput technologies, the vital functions of long non-coding RNAs (lncRNAs) have been gradually entered people’s vision and become new research hotspots. Nowadays, lncRNAs can play important roles in cancer progression by combining with miRNAs, activating molecular targets and other ways, and are also related to the diagnosis, treatment and prognosis for cancer, such as prostate cancer. Current review focused on the summary of diagnostic roles and mechanistic functions about exosomal lncRNAs in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ESCRT:

Endosomal sorting complexes required for transport

MVB:

Multivesicular bodies

PCA3:

PCa antibody 3

NEAT1:

Nuclear-enriched abundant transcript 1

PCSEAT:

PCa specific expression and EZH2-associated transcript

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

CXCL14:

C-X-C motif chemokine ligand-14

EZH2:

Enhancer of zeste homolog 2

RUNX2:

Runt-related transcription factor 2

SFPQ:

Splicing factor proline- and glutamine-rich

PTBP2:

Polypyrimidine tract-binding protein 2

FOXM1:

Forkhead box M1

ATG4a:

Autophagy-related protein 4 homolog A

References

  1. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020;77(1):38–52. https://doi.org/10.1016/j.eururo.2019.08.005.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  3. Zhu Y, Mo M, Wei Y, Wu J, Pan J, Freedland SJ, et al. Epidemiology and genomics of prostate cancer in Asian men. Nat Rev Urol. 2021;18(5):282–301. https://doi.org/10.1038/s41585-021-00442-8.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman RM. Clinical practice. Screening for prostate cancer. N Engl J Med. 2011;365(21):2013–9. https://doi.org/10.1056/NEJMcp1103642.

    Article  CAS  PubMed  Google Scholar 

  5. Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol. 2021;22(5):560–70. https://doi.org/10.1038/s41590-021-00899-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med. 2018;379(10):958–66. https://doi.org/10.1056/NEJMra1704286.

    Article  CAS  PubMed  Google Scholar 

  7. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902.

    Article  CAS  PubMed  Google Scholar 

  8. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60. https://doi.org/10.1016/j.devcel.2019.04.011.

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer. 2018;17(1):82. https://doi.org/10.1186/s12943-018-0831-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–51. https://doi.org/10.1016/j.tig.2015.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeuschner P, Linxweiler J, Junker K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev Mol Diagn. 2020;20(2):151–67. https://doi.org/10.1080/14737159.2019.1665998.

    Article  CAS  PubMed  Google Scholar 

  13. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407. https://doi.org/10.1016/j.cell.2018.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA. 2018;9(3): e1471. https://doi.org/10.1002/wrna.1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robert Finestra T, Gribnau J. X chromosome inactivation: silencing, topology and reactivation. Curr Opin Cell Biol. 2017;46:54–61. https://doi.org/10.1016/j.ceb.2017.01.007.

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell P, Tollervey D. mRNA turnover. Curr Opin Cell Biol. 2001;13(3):320–5. https://doi.org/10.1016/S0955-0674(00)00214-3.

    Article  CAS  PubMed  Google Scholar 

  17. Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3’ UTRs via Alu elements. Nature. 2011;470(7333):284–8. https://doi.org/10.1038/nature09701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7. https://doi.org/10.1038/ng.710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81. https://doi.org/10.1158/0008-5472.Can-16-2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng W, Zhang Z, Wang J. Long noncoding RNAs: new players in prostate cancer. Cancer. 2013;339(1):8–14. https://doi.org/10.1016/j.canlet.2013.07.008.

    Article  CAS  Google Scholar 

  21. Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform. 2016;17(1):106–16. https://doi.org/10.1093/bib/bbv031.

    Article  CAS  PubMed  Google Scholar 

  22. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509. https://doi.org/10.1007/s00018-016-2174-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boon RA, Jaé N, Holdt L, Dimmeler S. Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol. 2016;67(10):1214–26. https://doi.org/10.1016/j.jacc.2015.12.051.

    Article  CAS  PubMed  Google Scholar 

  24. Choi SW, Kim HW, Nam JW. The small peptide world in long noncoding RNAs. Brief Bioinform. 2019;20(5):1853–64. https://doi.org/10.1093/bib/bby055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang X, Xu Y, Wang X, Jiang C, Han S, Dong K, et al. LincRNA-p21 suppresses development of human prostate cancer through inhibition of PKM2. Cell Prolif. 2017;50(6): e12395. https://doi.org/10.1111/cpr.12395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rathinasamy B, Velmurugan BK. Role of lncRNAs in the cancer development and progression and their regulation by various phytochemicals. Biomed Pharmacother. 2018;102:242–8. https://doi.org/10.1016/j.biopha.2018.03.077.

    Article  CAS  PubMed  Google Scholar 

  27. McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol. 2021;75:38–48.

    Article  CAS  PubMed  Google Scholar 

  28. Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32(4):466–77. https://doi.org/10.1016/j.annonc.2021.01.074.

    Article  CAS  PubMed  Google Scholar 

  29. Casanova-Salas I, Athie A, Boutros PC, Del Re M, Miyamoto DT, Pienta KJ, et al. Quantitative and qualitative analysis of blood-based liquid biopsies to inform clinical decision-making in prostate cancer. Eur Urol. 2021;79(6):762–71. https://doi.org/10.1016/j.eururo.2020.12.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prensner JR, Zhao S, Erho N, Schipper M, Iyer MK, Dhanasekaran SM, et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol. 2014;15(13):1469–80. https://doi.org/10.1016/s1470-2045(14)71113-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang YH, Ji J, Wang BC, Chen H, Yang ZH, Wang K, et al. Tumor-derived exosomal long noncoding RNAs as promising diagnostic biomarkers for prostate cancer. Cell Physiol Biochem. 2018;46(2):532–45. https://doi.org/10.1159/000488620.

    Article  CAS  PubMed  Google Scholar 

  32. Luo J, Wang K, Yeh S, Sun Y, Liang L, Xiao Y, et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat Commun. 2019;10(1):2571. https://doi.org/10.1038/s41467-019-09784-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Işın M, Uysaler E, Özgür E, Köseoğlu H, Şanlı Ö, Yücel ÖB, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168. https://doi.org/10.3389/fgene.2015.00168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 2021;1875(2): 188502. https://doi.org/10.1016/j.bbcan.2021.188502.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Ji J, Lyu J, Jin X, He X, Mo S, et al. A novel urine exosomal lncRNA assay to improve the detection of prostate cancer at initial biopsy: a retrospective multicenter diagnostic feasibility study. Cancers. 2021;13(16):4075. https://doi.org/10.3390/cancers13164075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hendriks RJ, Dijkstra S, Jannink SA, Steffens MG, van Oort IM, Mulders PF, et al. Comparative analysis of prostate cancer specific biomarkers PCA3 and ERG in whole urine, urinary sediments and exosomes. Clin Chem Lab Med. 2016;54(3):483–92. https://doi.org/10.1515/cclm-2015-0599.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 2019;39(1):76. https://doi.org/10.1186/s40880-019-0425-1.

    Article  Google Scholar 

  38. Guo Z, Lu X, Yang F, He C, Qin L, Yang N, et al. Exosomal LINC01213 plays a role in the transition of androgen-dependent prostate cancer cells into androgen-independent manners. J Oncol. 2022. https://doi.org/10.1155/2022/8058770.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li Q, Hu J, Shi Y, Xiao M, Bi T, Wang C, et al. Exosomal lncAY927529 enhances prostate cancer cell proliferation and invasion through regulating bone microenvironment. Cell Cycle. 2021;20(23):2531–46. https://doi.org/10.1080/15384101.2021.1992853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang X, Wang L, Li R, Zhao Y, Gu Y, Liu S, et al. The long non-coding RNA PCSEAT exhibits an oncogenic property in prostate cancer and functions as a competing endogenous RNA that associates with EZH2. Biochem Biophys Res Commun. 2018;502(2):262–8. https://doi.org/10.1016/j.bbrc.2018.05.157.

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Yang X, Li R, Wang L, Gu Y, Zhao Y, et al. Long non-coding RNA MYU promotes prostate cancer proliferation by mediating the miR-184/c-Myc axis. Oncol Rep. 2018;40(5):2814–25. https://doi.org/10.3892/or.2018.6661.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang Y, Zhao H, Chen Y, Li K, Li T, Chen J, et al. Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis. Cell Death Dis. 2021;12(12):1129. https://doi.org/10.1038/s41419-021-04421-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mo C, Huang B, Zhuang J, Jiang S, Guo S, Mao X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin Transl Med. 2021;11(8): e493. https://doi.org/10.1002/ctm2.493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xia W, Chen H, Xie C, Hou M. Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging. 2020;12(9):8241–60. https://doi.org/10.18632/aging.103136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ozgur E, Gezer U. Investigation of lncRNA H19 in prostate cancer cells and secreted exosomes upon androgen stimulation or androgen receptor blockage. Bratisl Lek Listy. 2020;121(5):362–5. https://doi.org/10.4149/bll_2020_058.

    Article  CAS  PubMed  Google Scholar 

  46. Cully M. Exosome-based candidates move into the clinic. Nat Rev Drug Discov. 2021;20(1):6–7. https://doi.org/10.1038/d41573-020-00220-y.

    Article  CAS  PubMed  Google Scholar 

  47. Yang F, Liao X, Tian Y, Li G. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies. Biotechnol J. 2017;12(4):1600699. https://doi.org/10.1002/biot.201600699.

    Article  CAS  Google Scholar 

  48. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655–64. https://doi.org/10.1016/j.nano.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  49. Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020.

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release. 2021;329:894–906. https://doi.org/10.1016/j.jconrel.2020.10.020.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B. 2019;7(15):2421–33. https://doi.org/10.1039/c9tb00170k.

    Article  CAS  PubMed  Google Scholar 

  52. Li W, Li C, Zhou T, Liu X, Liu X, Li X, et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017;16(1):145. https://doi.org/10.1186/s12943-017-0706-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol. 2013;6:37. https://doi.org/10.1186/1756-8722-6-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mehra R, Shi Y, Udager AM, Prensner JR, Sahu A, Iyer MK, et al. A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia. 2014;16(12):1121–7. https://doi.org/10.1016/j.neo.2014.11.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Na XY, Liu ZY, Ren PP, Yu R, Shang XS. Long non-coding RNA UCA1 contributes to the progression of prostate cancer and regulates proliferation through KLF4-KRT6/13 signaling pathway. Int J Clin Exp Med. 2015;8(8):12609–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shukla S, Zhang X, Niknafs YS, Xiao L, Mehra R, Cieślik M, et al. Identification and validation of PCAT14 as prognostic biomarker in prostate cancer. Neoplasia. 2016;18(8):489–99. https://doi.org/10.1016/j.neo.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22. https://doi.org/10.1016/j.ccr.2010.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation (No. 81802576), Wuxi City Medical Young Talent (No. QNRC043), Wuxi Commission of Health and Family Planning (No. T202102, T202024, J202012, Z202011), the Science and Technology Development Fund of Wuxi (No. N20202021), and Jiangnan University Wuxi School of Medicine (No. 1286010242190070) and Talent plan of Taihu Lake in Wuxi (Double Hundred Medical Youth Professionals Program) from Health Committee of Wuxi (No. BJ2020061). Clinical trial of Affiliated Hospital of Jiangnan University (No. LCYJ202227), Research topic of Jiangsu Health Commission (Z2022047).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Informed consent

Informed consent is not required for this type of study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijie Zhu or Yuanyuan Mi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Wan, H., Feng, Y. et al. The diagnostic role and mechanistic functions of exosomal lncRNAs in prostate cancer. Clin Transl Oncol 25, 592–600 (2023). https://doi.org/10.1007/s12094-022-02982-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02982-w

Keywords

Navigation