Skip to main content

Advertisement

Log in

A review of literature: role of long noncoding RNA TPT1-AS1 in human diseases

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Human diseases are multifactorial processes mainly driven by the intricate interactions of genetic and environmental factors. Long noncoding RNAs (lncRNAs) represent a type of non-coding RNAs with more than 200 nucleotides. Multiple studies have demonstrated that the dysregulation of lncRNAs is associated with complex biological as well as pathological processes through various mechanism, especially the regulation of gene transcription and related signal transduction pathways. Moreover, an increasing number of studies have explored lncRNA-based clinical applications in different diseases. For instance, the lncRNA Tumor Protein Translationally Controlled 1 (TPT1) Antisense RNA 1 (TPT1-AS1) was found to be dysregulated in several types of disease and strongly associated with patient prognosis and diverse clinical features. Recent studies have also documented that TPT1-AS1 modulates numerous biological processes through multiple mechanisms, including cell proliferation, apoptosis, autophagy, invasion, migration, radiosensitivity, chemosensitivity, stemness, and extracellular matrix (ECM) synthesis. Furthermore, TPT1-AS1 was regarded as a promising biomarker for the diagnosis, prognosis and treatment of several human diseases. In this review, we summarize the role of TPT1-AS1 in human diseases with the aspects of its expression, relevant clinical characteristics, molecular mechanisms, biological functions, and subsequent clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nurnberg ST, Guerraty MA, Wirka RC, Rao HS, Pjanic M, Norton S, et al. Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases. PLoS Genet. 2020;16(1): e1008538.

    Article  CAS  Google Scholar 

  2. Dobrucki LW, Dione DP, Kalinowski L, Dione D, Mendizabal M, Yu J, et al. Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med. 2009;50(8):1356–63.

    Article  Google Scholar 

  3. Frånberg M, Gertow K, Hamsten A, Lagergren J, Sennblad B. Discovering genetic interactions in large-scale association studies by stage-wise likelihood ratio tests. PLoS Genet. 2015;11(9):e1005502.

    Article  Google Scholar 

  4. Zanin M, Chorbev I, Stres B, Stalidzans E, Vera J, Tieri P, et al. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine. Brief Bioinform. 2019;20(3):1057–62.

    Article  Google Scholar 

  5. Nath SK, Quintero-Del-Rio AI, Kilpatrick J, Feo L, Ballesteros M, Harley JB. Linkage at 12q24 with systemic lupus erythematosus (SLE) is established and confirmed in Hispanic and European American families. Am J Hum Genet. 2004;74(1):73–82.

    Article  CAS  Google Scholar 

  6. Becker F, van El CG, Ibarreta D, Zika E, Hogarth S, Borry P, et al. Genetic testing and common disorders in a public health framework: how to assess relevance and possibilities. Background document to the ESHG recommendations on genetic testing and common disorders. Eur J Hum Genet. 2011;19(Suppl 1):6–44.

    Article  Google Scholar 

  7. Kino Y, Washizu C, Kurosawa M, Yamada M, Miyazaki H, Akagi T, et al. FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2015. https://doi.org/10.1186/s40478-015-0202-6.

    Article  Google Scholar 

  8. Overå KS, Garcia-Garcia J, Bhujabal Z, Jain A, Øvervatn A, Larsen KB, et al. TRIM32, but not its muscular dystrophy-associated mutant, positively regulates and is targeted to autophagic degradation by p62/SQSTM1. J Cell Sci. 2019;132:23.

    Google Scholar 

  9. Bocci T, Pecori C, Giorli E, Briscese L, Tognazzi S, Caleo M, et al. Differential motor neuron impairment and axonal regeneration in sporadic and familiar amyotrophic lateral sclerosis with SOD-1 mutations: lessons from neurophysiology. Int J Mol Sci. 2011;12(12):9203–15.

    Article  CAS  Google Scholar 

  10. Gryszczyńska B, Budzyń M, Formanowicz D, Wanic-Kossowska M, Formanowicz P, Majewski W, et al. Selected atherosclerosis-related diseases may differentially affect the relationship between plasma advanced glycation end products, receptor sRAGE, and uric acid. J Clin Med. 2020. https://doi.org/10.3390/jcm9051416.

    Article  Google Scholar 

  11. Osada H, Toda E, Homma K, Guzman NA, Nagai N, Ogawa M, et al. ADIPOR1 deficiency-induced suppression of retinal ELOVL2 and docosahexaenoic acid levels during photoreceptor degeneration and visual loss. Cell Death Dis. 2021;12(5):458.

    Article  CAS  Google Scholar 

  12. Yang X, Cai JB, Peng R, Wei CY, Lu JC, Gao C, et al. The long noncoding RNA NORAD enhances the TGF-β pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p. J Cell Physiol. 2019;234(7):12051–60.

    Article  CAS  Google Scholar 

  13. Deng Q, Wen R, Liu S, Chen X, Song S, Li X, et al. Increased long noncoding RNA maternally expressed gene 3 contributes to podocyte injury induced by high glucose through regulation of mitochondrial fission. Cell Death Dis. 2020;11(9):814.

    Article  CAS  Google Scholar 

  14. Castejón-Vega B, Battino M, Quiles JL, Bullon B, Cordero MD, Bullón P. Potential role of the mitochondria for the dermatological treatment of Papillon-Lefèvre. Antioxidants (Basel). 2021;10(1):95.

    Article  Google Scholar 

  15. Lu X, Ding Y, Bai Y, Li J, Zhang G, Wang S, et al. Detection of allosteric effects of lncRNA secondary structures altered by SNPs in human diseases. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00242.

    Article  Google Scholar 

  16. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021. https://doi.org/10.1083/jcb.202009045.

    Article  Google Scholar 

  17. Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci. 2019;44(1):33–52.

    Article  CAS  Google Scholar 

  18. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017;18(1):206.

    Article  Google Scholar 

  19. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  Google Scholar 

  20. Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform. 2016;17(1):106–16.

    Article  Google Scholar 

  21. Arenas AM, Cuadros M, Andrades A, García DJ, Coira IF, Rodríguez MI, et al. LncRNA DLG2-AS1 as a novel biomarker in lung adenocarcinoma. Cancers (Basel). 2020;12(8):2080.

    Article  CAS  Google Scholar 

  22. Wu J, Wang N, Yang Y, Jiang G, Zhan H, Li F. LINC01152 upregulates MAML2 expression to modulate the progression of glioblastoma multiforme via Notch signaling pathway. Cell Death Dis. 2021;12(1):115.

    Article  CAS  Google Scholar 

  23. Li Y, Xu S, Xu D, Pan T, Guo J, Gu S, et al. Pediatric pan-central nervous system tumor methylome analyses reveal immune-related LncRNAs. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.853904.

    Article  Google Scholar 

  24. Jiang L, Zhou B, Fu D, Cheng B. lncRNA TUG1 promotes the development of oral squamous cell carcinoma by regulating the MAPK signaling pathway by sponging miR-593–3p. Cell Cycle. 2022. https://doi.org/10.1080/15384101.2022.2074624.

    Article  Google Scholar 

  25. Xu Y, Jiang Y, Wang Y, Jia B, Gao S, Yu H, et al. LINC00473-modified bone marrow mesenchymal stem cells incorporated thermosensitive PLGA hydrogel transplantation for steroid-induced osteonecrosis of femoral head: a detailed mechanistic study and validity evaluation. Bioeng Transl Med. 2022;7(2): e10275.

    Article  CAS  Google Scholar 

  26. Jin Z, Liu B, Lin B, Yang R, Wu C, Xue W, et al. The novel lncRNA RP9P promotes colorectal cancer progression by modulating miR-133a-3p/FOXQ1 axis. Front Oncol. 2022. https://doi.org/10.3389/fcell.2022.886191.

    Article  Google Scholar 

  27. Kang F, Jiang F, Ouyang L, Wu S, Fu C, Liu Y, et al. Potential biological roles of exosomal long non-coding RNAs in gastrointestinal cancer. Front Cell Dev Biol. 2022;840:10886191.

    Google Scholar 

  28. Wang Y, Liu C, Chen Y, Chen T, Han T, Xue L, et al. Systemically silencing long non-coding RNAs maclpil with short interfering RNA nanoparticles alleviates experimental ischemic stroke by promoting macrophage apoptosis and anti-inflammatory activation. Front Cardiovasc Med. 2022. https://doi.org/10.3389/fcvm.2022.876087.

    Article  Google Scholar 

  29. Dai YZ, Liu YD, Li J, Chen MT, Huang M, Wang F, et al. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an m(6)A-dependent manner. Cell Mol Biol Lett. 2022;27(1):41.

    Article  CAS  Google Scholar 

  30. Gao M, Liu L, Yang Y, Li M, Ma Q, Chang Z. LncRNA HCP5 induces gastric cancer cell proliferation, invasion, and EMT processes through the miR-186–5p/WNT5A axis under hypoxia. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.663654.

    Article  Google Scholar 

  31. Ebrahimi N, Parkhideh S, Samizade S, Esfahani AN, Samsami S, Yazdani E, et al. Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev. 2022. https://doi.org/10.1016/j.cytogfr.2022.04.003.

    Article  Google Scholar 

  32. Ning S, Wu J, Pan Y, Qiao K, Li L, Huang Q. Identification of CD4(+) conventional T cells-related lncRNA signature to improve the prediction of prognosis and immunotherapy response in breast cancer. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.880769.

    Article  Google Scholar 

  33. Zhai JJ, Du XR, Li CX. Effects of tumor protein translation control antisense RNA1 on radiosensitivity, proliferation, migration and invasion of hepatocellular carcinoma cells by targeting miR-30c-5p. Zhonghua Zhong Liu Za Zhi. 2021;43(10):1054–61.

    CAS  Google Scholar 

  34. Li H, Jin J, Xian J, Wang W. lncRNA TPT1-AS1 knockdown inhibits liver cancer cell proliferation, migration and invasion. Mol Med Rep. 2021. https://doi.org/10.3892/mmr.2021.12422.

    Article  Google Scholar 

  35. Wei W, Huang X, Shen X, Lian J, Chen Y, Wang W, et al. Overexpression of IncRNA TPT1-AS1 suppresses hepatocellular carcinoma cell proliferation by downregulating CDK2. Crit Rev Eukaryot Gene Expr. 2022;32(1):1–9.

    Article  Google Scholar 

  36. Xing XL, Xing C, Huang Z, Yao ZY, Liu YW. Immune-related lncRNAs to construct novel signatures and predict the prognosis of rectal cancer. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.661846.

    Article  Google Scholar 

  37. Chen B, Sun H, Xu S, Mo Q. Long non-coding RNA TPT1-AS1 suppresses APC transcription in a STAT1-dependent manner to increase the stemness of colorectal cancer stem cells. Mol Biotechnol. 2022;64(5):560–74.

    Article  CAS  Google Scholar 

  38. Zhang L, Ye F, Zuo Z, Cao D, Peng Y, Li Z, et al. Long noncoding RNA TPT1-AS1 promotes the progression and metastasis of colorectal cancer by upregulating the TPT1-mediated FAK and JAK-STAT3 signalling pathways. Aging (Albany NY). 2021;13(3):3779–97.

    Article  CAS  Google Scholar 

  39. Zhang Y, Sun J, Qi Y, Wang Y, Ding Y, Wang K, et al. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway. Aging (Albany NY). 2020;12(7):6191–205.

    Article  CAS  Google Scholar 

  40. Huang Y, Zheng Y, Shao X, Shi L, Li G, Huang P. Long non-coding RNA TPT1-AS1 sensitizes breast cancer cell to paclitaxel and inhibits cell proliferation by miR-3156-5p/caspase 2 axis. Hum Cell. 2021;34(4):1244–54.

    Article  CAS  Google Scholar 

  41. Elango R, Vishnubalaji R, Shaath H, Alajez NM. Transcriptional alterations of protein coding and noncoding RNAs in triple negative breast cancer in response to DNA methyltransferases inhibition. Cancer Cell Int. 2021;21(1):515.

    Article  CAS  Google Scholar 

  42. Hu C, Fang K, Zhang X, Guo Z, Li L. Dysregulation of the lncRNA TPT1-AS1 positively regulates QKI expression and predicts a poor prognosis for patients with breast cancer. Pathol Res Pract. 2020;216(11): 153216.

    Article  CAS  Google Scholar 

  43. Lin N, Lin JZ, Tanaka Y, Sun P, Zhou X. Identification and validation of a five-lncRNA signature for predicting survival with targeted drug candidates in ovarian cancer. Bioengineered. 2021;12(1):3263–74.

    Article  CAS  Google Scholar 

  44. Wu W, Gao H, Li X, Zhu Y, Peng S, Yu J, et al. LncRNA TPT1-AS1 promotes tumorigenesis and metastasis in epithelial ovarian cancer by inducing TPT1 expression. Cancer Sci. 2019;110(5):1587–98.

    Article  CAS  Google Scholar 

  45. Gao X, Cao Y, Li J, Wang C, He H. LncRNA TPT1-AS1 sponges miR-23a-5p in glioblastoma to promote cancer cell proliferation. Cancer Biother Radiopharm. 2021;36(7):549–55.

    CAS  Google Scholar 

  46. Jia L, Song Y, Mu L, Li Q, Tang J, Yang Z, et al. Long noncoding RNA TPT1-AS1 downregulates the microRNA-770-5p expression to inhibit glioma cell autophagy and promote proliferation through STMN1 upregulation. J Cell Physiol. 2020;235(4):3679–89.

    Article  CAS  Google Scholar 

  47. Wang W, Yang F, Zhang L, Chen J, Zhao Z, Wang H, et al. LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas. Oncotarget. 2016;7(47):77225–36.

    Article  Google Scholar 

  48. Zhang B. Guizhi Fuling pills inhibit the proliferation, migration and invasion of human cutaneous malignant melanoma cells by regulating the molecular axis of LncRNA TPT1-AS1/miR-671–5p. Cell Mol Biol (Noisy-le-grand). 2020;66(5):148–54.

    Article  Google Scholar 

  49. Tang J, Huang F, Wang H, Cheng F, Pi Y, Zhao J, et al. Knockdown of TPT1-AS1 inhibits cell proliferation, cell cycle G1/S transition, and epithelial-mesenchymal transition in gastric cancer. Bosn J Basic Med Sci. 2021;21(1):39–46.

    CAS  Google Scholar 

  50. Cheng C, Liu D, Liu Z, Li M, Wang Y, Sun B, et al. Positive feedback regulation of lncRNA TPT1-AS1 and ITGB3 promotes cell growth and metastasis in pancreatic cancer. Cancer Sci. 2022. https://doi.org/10.1111/cas.15388.

    Article  Google Scholar 

  51. Luo J, You H, Zhan J, Guo G, Cheng X, Zheng G. Long non-coding RNA TPT1-AS1 alleviates cell injury and promotes the production of extracellular matrix by targeting the microRNA-324-5p/CDK16 axis in human dermal fibroblasts after thermal injury. Exp Ther Med. 2021;22(2):843.

    Article  CAS  Google Scholar 

  52. Fan F, Huang Z, Chen Y. Integrated analysis of immune-related long noncoding RNAs as diagnostic biomarkers in psoriasis. PeerJ. 2021;9:e11018.

    Article  Google Scholar 

  53. Kazerouni F, Bayani A, Asadi F, Saeidi L, Parvizi N, Mansoori Z. Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches. BMC Bioinform. 2020;21(1):372.

    Article  Google Scholar 

  54. Okuda H, Okamoto K, Abe M, Ishizawa K, Makino S, Tanabe O, et al. Genome-wide association study identifies new loci for albuminuria in the Japanese population. Clin Exp Nephrol. 2020;24(8):1–9.

    Article  CAS  Google Scholar 

  55. Zan XY, Li L. Construction of lncRNA-mediated ceRNA network to reveal clinically relevant lncRNA biomarkers in glioblastomas. Oncol Lett. 2019;17(5):4369–74.

    CAS  Google Scholar 

  56. Agwa SHA, Elzahwy SS, El Meteini MS, Elghazaly H, Saad M, Abd Elsamee AM, et al. ABHD4-regulating RNA panel: novel biomarkers in acute coronary syndrome diagnosis. Cells. 2021;10(6):1298.

    Article  Google Scholar 

  57. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–307.

    Article  CAS  Google Scholar 

  58. Xiao ZD, Zhuang L, Gan B. Long non-coding RNAs in cancer metabolism. BioEssays. 2016;38(10):991–6.

    Article  CAS  Google Scholar 

  59. Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G, Green PH, et al. A long noncoding RNA associated with susceptibility to celiac disease. Science. 2016;352(6281):91–5.

    Article  CAS  Google Scholar 

  60. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509.

    Article  CAS  Google Scholar 

  61. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  Google Scholar 

  62. Terai G, Iwakiri J, Kameda T, Hamadas M, Asai K. Comprehensive prediction of lncRNA-RNA interactions in human transcriptome. BMC Genom. 2016;17(Suppl 1):12.

    Article  Google Scholar 

  63. Fernández-Cortés M, Andrés-León E, Oliver FJ. The PARP inhibitor olaparib modulates the transcriptional regulatory networks of long non-coding RNAs during vasculogenic mimicry. Cells. 2020;9(12):2690.

    Article  Google Scholar 

  64. Huang YA, Chan KCC, You ZH, Hu P, Wang L, Huang ZA. Predicting microRNA-disease associations from lncRNA-microRNA interactions via multiview multitask learning. Brief Bioinform. 2021. https://doi.org/10.1093/bib/bbaa133.

    Article  Google Scholar 

  65. Qiu B, Simon MC. Oncogenes strike a balance between cellular growth and homeostasis. Semin Cell Dev Biol. 2015;43:3–10.

    Article  CAS  Google Scholar 

  66. Kalailingam P, Tan HB, Pan JY, Tan SH, Thanabalu T. Overexpression of CDC42SE1 in A431 cells reduced cell proliferation by inhibiting the Akt pathway. Cells. 2019;8(2):117.

    Article  CAS  Google Scholar 

  67. Săsăran MO, Meliț LE, Dobru ED. MicroRNA modulation of host immune response and inflammation triggered by helicobacter pylori. Int J Mol Sci. 2021;22(3):1406.

    Article  Google Scholar 

  68. Wang D, Chen J, Li B, Jiang Q, Liu L, Xia Z, et al. A noncoding regulatory RNA Gm31932 induces cell cycle arrest and differentiation in melanoma via the miR-344d-3-5p/Prc1 (and Nuf2) axis. Cell Death Dis. 2022;13(4):314.

    Article  CAS  Google Scholar 

  69. Elmallah MIY, Micheau O. Epigenetic regulation of TRAIL signaling: implication for cancer therapy. Cancers (Basel). 2019;11(6):850.

    Article  CAS  Google Scholar 

  70. Chun G, Bae D, Nickens K, O’Brien TJ, Patierno SR, Ceryak S. Polo-like kinase 1 enhances survival and mutagenesis after genotoxic stress in normal cells through cell cycle checkpoint bypass. Carcinogenesis. 2010;31(5):785–93.

    Article  CAS  Google Scholar 

  71. Chen DY, Crest J, Bilder D. A cell migration tracking tool supports coupling of tissue rotation to elongation. Cell Rep. 2017;21(3):559–69.

    Article  CAS  Google Scholar 

  72. Lin SZ, Ye S, Xu GK, Li B, Feng XQ. Dynamic migration modes of collective cells. Biophys J. 2018;115(9):1826–35.

    Article  CAS  Google Scholar 

  73. Fuselier C, Terryn C, Berquand A, Crowet JM, Bonnomet A, Molinari M, et al. Low-diluted phenacetinum disrupted the melanoma cancer cell migration. Sci Rep. 2019;9(1):9109.

    Article  Google Scholar 

  74. Massagué J, Batlle E, Gomis RR. Understanding the molecular mechanisms driving metastasis. Mol Oncol. 2017;11(1):3–4.

    Article  Google Scholar 

  75. Liu H, Luo J, Luan S, He C, Li Z. Long non-coding RNAs involved in cancer metabolic reprogramming. Cell Mol Life Sci. 2019;76(3):495–504.

    Article  Google Scholar 

  76. Xia L, Nie D, Wang G, Sun C, Chen G. FER1L4/miR-372/E2F1 works as a ceRNA system to regulate the proliferation and cell cycle of glioma cells. J Cell Mol Med. 2019;23(5):3224–33.

    Article  CAS  Google Scholar 

  77. Wu Y, Hu L, Liang Y, Li J, Wang K, Chen X, et al. Up-regulation of lncRNA CASC9 promotes esophageal squamous cell carcinoma growth by negatively regulating PDCD4 expression through EZH2. Mol Cancer. 2017;16(1):150.

    Article  Google Scholar 

  78. Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y, et al. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 2014;74(23):6890–902.

    Article  CAS  Google Scholar 

  79. Wang K, Jin W, Song Y, Fei X. LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335–5p and promotes proliferation and invasion in renal cell carcinoma. Mol Cancer. 2017;16(1):166.

    Article  Google Scholar 

  80. Kim WY, Lee SH, Kim DY, Ryu HJ, Chon GR, Park YY, et al. Serum developmental endothelial locus-1 is associated with severity of sepsis in animals and humans. Sci Rep. 2019;9(1):13005.

    Article  Google Scholar 

  81. Sørensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia - an exploratory study. Transl Neurodegener. 2016. https://doi.org/10.1186/s40035-016-0053-5.

    Article  Google Scholar 

  82. Kim SH, Gwak HS, Lee Y, Park NY, Han M, Kim Y, et al. Evaluation of serum neurofilament light chain and glial fibrillary acidic protein as screening and monitoring biomarkers for brain metastases. Cancers (Basel). 2021;13(9):2227.

    Article  CAS  Google Scholar 

  83. Jensen C, Madsen DH, Hansen M, Schmidt H, Svane IM, Karsdal MA, et al. Non-invasive biomarkers derived from the extracellular matrix associate with response to immune checkpoint blockade (anti-CTLA-4) in metastatic melanoma patients. J Immunother Cancer. 2018;6(1):152.

    Article  Google Scholar 

  84. Meng X, Su RJ, Baylink DJ, Neises A, Kiroyan JB, Lee WY, et al. Rapid and efficient reprogramming of human fetal and adult blood CD34+ cells into mesenchymal stem cells with a single factor. Cell Res. 2013;23(5):658–72.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Research Project of Henan Province (212102310211).

Author information

Authors and Affiliations

Authors

Contributions

JL designed the work, YL and FL wrote this manuscript, and ZS made figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, F., Sun, Z. et al. A review of literature: role of long noncoding RNA TPT1-AS1 in human diseases. Clin Transl Oncol 25, 306–315 (2023). https://doi.org/10.1007/s12094-022-02947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02947-z

Keywords

Navigation