Skip to main content

Advertisement

Log in

The role of LncRNA MCM3AP-AS1 in human cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNA) play pivotal roles in every level of gene and genome regulation. MCM3AP-AS1 is a lncRNA that has an oncogenic role in several kinds of cancers. Aberrant expression of MCM3AP-AS1 has been reported to be involved in the progression of diverse malignancies, including colorectal, cervical, prostate, lymphoma, lung, ovary, liver, bone, and breast cancers. It is generally believed that MCM3AP-AS1 expression is associated with cancer cell growth, proliferation, angiogenesis, and metastasis. MCM3AP-AS1 by targeting various signaling pathways and microRNAs (miRNAs) presents an important role in cancer pathogenesis. MCM3AP-AS1 as a competitive endogenous RNA has the ability to sponge miRNA, inhibit their expressions, and bind to different target mRNAs related to cancer development. Therefore, MCM3AP-AS1 by targeting several signaling pathways, including the FOX family, Wnt, EGF, and VEGF can be a potent target for cancer prediction and diagnosis. In this review, we will summarize the role of MCM3AP-AS1 in various human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AGGF1:

Angiogenic factor with G-patch and FHA domain 1

BL:

Burkitt lymphoma

BC:

Breast cancer

CENPF:

Centromere protein F

CSCC:

Squamous cell carcinoma

CDK:

Cyclin-dependent kinase

CCND1:

Cyclin D1

ccRCC:

Clear cell renal cell carcinoma

ceRNA:

Competing endogenous

CRC:

Colorectal cancer

DDK:

Dbf4 dependent kinase

DPP:

Dipeptidyl peptidase

EIF4E:

Eukaryotic translation initiation factor 4E

ER:

Estrogen receptor

EC:

Endometrial cancer

EMT:

Epithelial–mesenchymal transition

Erα:

Estrogen receptor α

FOXF2:

Forkhead box F2

GBM:

Glioblastoma

GC:

Gastric cancer

HCC:

Hepatocellular carcinoma

HPV:

Human papillomavirus

lncRNA:

Long noncoding RNAs

miRNAs:

MicroRNAs

MCM:

Minichromosome maintenance protein

MMP1:

Matrix metalloproteinase 1

NHL:

Non-Hodgkin lymphoma

ORC:

Origin recognition complex

OSCC:

Oral squamous cell carcinoma

OC:

Ovarian cancer

pre-RC:

Pre-replicative complex

PARP:

Poly (ADP-ribose) polymerase 1

PaC:

Pancreatic cancer

PTC:

Papillary thyroid cancer

PrC:

Prostate cancer

PR:

Progesterone receptor

RCC:

Renal cell carcinoma

SPARC:

Secreted protein acidic and cysteine rich

TAK1:

Transforming growth factor‑β‑activated kinase 1

VEGF-A:

Vascular endothelial growth factor-A

ZFP36:

RNA-binding protein ZFP36 ring finger protein

References

  1. Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. 2019;20:5573.

    Article  CAS  Google Scholar 

  2. Sun Y-M, Chen Y-Q. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol. 2020;13:109.

    Article  Google Scholar 

  3. Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand J-L, Devaux Y. The function and therapeutic potential of long non-coding RNAs in cardiovascular development and disease. Mol Ther Nucleic Acids. 2017;8:494–507.

    Article  CAS  Google Scholar 

  4. Wong NK, Huang C-L, Islam R, Yip SP. Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies. J Hematol Oncol. 2018;11:131.

    Article  CAS  Google Scholar 

  5. Youness RA, Gad MZ. Long non-coding RNAs: functional regulatory players in breast cancer. Noncoding RNA Res. 2019;4:36–44.

    Article  CAS  Google Scholar 

  6. Pecero ML, Salvador-Bofill J, Molina-Pinelo S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. Cell Oncol. 2019;42:1–12.

    Article  CAS  Google Scholar 

  7. Dieter C, Lemos NE, Corrêa NRdF, Assmann TS, Crispim D. The impact of lncRNAs in diabetes mellitus: a systematic review and in silico analyses. Front Endocrinol. 2021;12:602597.

    Article  Google Scholar 

  8. Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett. 2018;592:2884–900.

    Article  CAS  Google Scholar 

  9. Sun C, Huang L, Li Z, Leng K, Xu Y, Jiang X, Cui Y. Long non-coding RNA MIAT in development and disease: a new player in an old game. J Biomed Sci. 2018;25:23.

    Article  Google Scholar 

  10. Karakas D, Ozpolat B. The role of LncRNAs in translation. Noncoding RNA. 2021;7:16.

    Article  CAS  Google Scholar 

  11. Yu Y, Lai S, Peng X. Long non-coding RNA MCM3AP-AS1 facilitates colorectal cancer progression by regulating the microRNA-599/ARPP19 axis. Oncol Lett. 2021;21:1–1.

    Article  CAS  Google Scholar 

  12. Lan L, Liang Z, Zhao Y, Mo Y: 2020 LncRNA MCM3AP-AS1 inhibits cell proliferation in cervical squamous cell carcinoma by down-regulating miRNA-93. Bioscience reports 40.

  13. Bharti D, Jang S-J, Lee S-Y, Lee S-L, Rho G-J. In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells. 2020;9:557.

    Article  CAS  Google Scholar 

  14. Sun H, Wu P, Zhang B, Wu X, Chen W. MCM3AP-AS1 promotes cisplatin resistance in gastric cancer cells via the miR-138/FOXC1 axis. Oncol Lett. 2021;21:1–1.

    Article  Google Scholar 

  15. Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, Xie P, Yang B. Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat. 2021;20:1533033821990064.

    Article  CAS  Google Scholar 

  16. Guo C, Gong M, Li Z. Knockdown of lncRNA MCM3AP-AS1 attenuates chemoresistance of burkitt lymphoma to doxorubicin treatment via targeting the miR-15a/EIF4E axis. Cancer Manag Res. 2020;12:5845.

    Article  CAS  Google Scholar 

  17. Yang C, Zheng J, Xue Y, Yu H, Liu X, Ma J, Liu L, Wang P, Li Z, Cai H. The effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 axis regulating glioblastoma angiogenesis. Front Mol Neurosci. 2018;10:437.

    Article  Google Scholar 

  18. Li X, Yu M, Yang C. YY1-mediated overexpression of long noncoding RNA MCM3AP-AS1 accelerates angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis. J Cell Biochem. 2020;121:2258–67.

    Article  CAS  Google Scholar 

  19. Wen J, Han S, Cui M, Wang Y. Long non-coding RNA MCM3AP-AS1 drives ovarian cancer progression via the microRNA-143-3p/TAK1 axis. Oncol Rep. 2020;44:1375–84.

    CAS  Google Scholar 

  20. Zhang H, Luo C, Zhang G. LncRNA MCM3AP-AS1 regulates epidermal growth factor receptor and autophagy to promote hepatocellular carcinoma metastasis by interacting with miR-455. DNA Cell Biol. 2019;38:857–64.

    Article  CAS  Google Scholar 

  21. Zhang H, Lu B. The roles of ceRNAs-mediated autophagy in cancer chemoresistance and metastasis. Cancers. 2020;12:2926.

    Article  CAS  Google Scholar 

  22. Chen Q, Xu H, Zhu J, Feng K, Hu C. LncRNA MCM3AP-AS1 promotes breast cancer progression via modulating miR-28-5p/CENPF axis. Biomed Pharmacother. 2020;128: 110289.

    Article  CAS  Google Scholar 

  23. Yan Y, Yu J, Liu H, Guo S, Zhang Y, Ye Y, Xu L, Ming L. Construction of a long non-coding RNA-associated ceRNA network reveals potential prognostic lncRNA biomarkers in hepatocellular carcinoma. Pathol Res Pract. 2018;214:2031–8.

    Article  CAS  Google Scholar 

  24. Ying H, Ebrahimi M, Keivan M, Khoshnam SE, Salahi S, Farzaneh M. miRNAs; a novel strategy for the treatment of COVID-19. Cell Biol Int. 2021;45:2045–53.

    Article  CAS  Google Scholar 

  25. Anbiyaiee A, Ramazii M, Bajestani SS, Meybodi SM, Keivan M, Khoshnam SE, Farzaneh M: 2022 The function of LncRNA-ATB in cancer. Clin Transl Oncol 1–9.

  26. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73:2491–509.

    Article  CAS  Google Scholar 

  27. Shah IM, Dar MA, Bhat KA, Dar TA, Ahmad F, Ahmad SM: Long Non-Coding RNAs: Biogenesis, Mechanism of Action and Role in Different Biological and Pathological Processes. 2022.

  28. Soudyab M, Iranpour M, Ghafouri-Fard S: The role of long non-coding RNAs in breast cancer. Archives of Iranian medicine 2016, 19:0–0.

  29. An C, Wang I, Li X, Xia R, Deng F. Long non-coding RNA in prostate cancer. Am J Clin Exp Urol. 2022;10:170–9.

    Google Scholar 

  30. Xu W-W, Jin J, Wu X-Y, Ren Q-L, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int. 2022;22:1–9.

    Article  CAS  Google Scholar 

  31. Li L, Bi Y, Diao S, Li X, Yuan T, Xu T, Huang C, Li J. Exosomal LncRNAs and hepatocellular carcinoma: from basic research to clinical practice. Biochem Pharmacol. 2022;200:115032.

    Article  CAS  Google Scholar 

  32. Wang W, Xiang M, Liu H, Chu X, Sun Z, Feng L. A prognostic risk model based on DNA methylation levels of genes and lncRNAs in lung squamous cell carcinoma. PeerJ. 2022;10: e13057.

    Article  Google Scholar 

  33. Li X, Lv J, Liu S. MCM3AP-AS1 KD inhibits proliferation, invasion, and migration of PCa cells via DNMT1/DNMT3 (A/B) methylation-mediated upregulation of NPY1R. Mol Ther Nucleic Acids. 2020;20:265–78.

    Article  Google Scholar 

  34. Yu X, Zheng Q, Zhang Q, Zhang S, He Y, Guo W. MCM3AP-AS1: an indispensable cancer-related LncRNA. Front Cell Dev Biol. 2021;9: 752718.

    Article  Google Scholar 

  35. Chowdhary A, Satagopam V, Schneider R. Long non-coding RNAs: mechanisms, experimental, and computational approaches in identification, characterization, and their biomarker potential in cancer. Front Genet. 2021;12:770.

    Article  Google Scholar 

  36. Wang Y, Yang L, Chen T, Liu X, Guo Y, Zhu Q, Tong X, Yang W, Xu Q, Huang D. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol Cancer. 2019;18:1–16.

    Article  Google Scholar 

  37. Jia Z, Li W, Bian P, Liu H, Pan D, Dou Z. LncRNA MCM3AP-AS1 promotes cell proliferation and invasion through regulating miR-543-3p/SLC39A10/PTEN axis in prostate cancer. Onco Targets Ther. 2020;13:9365.

    Article  CAS  Google Scholar 

  38. Shen D, Li J, Tao K, Jiang Y. Long non-coding RNA MCM3AP antisense RNA 1 promotes non-small cell lung cancer progression through targeting microRNA-195-5p. Bioengineered. 2021;12:3525–38.

    Article  CAS  Google Scholar 

  39. Ma X, Luo J, Zhang Y, Sun D, Lin Y. LncRNA MCM3AP-AS1 upregulates CDK4 by sponging miR-545 to suppress G1 Arrest in colorectal cancer. Cancer Manag Res. 2020;12:8117.

    Article  CAS  Google Scholar 

  40. Jiang L, Hu W, Yao N: Prognostic Impact of lncRNA MCM3AP-AS1 Expression in Malignant Solid Tumors: A Systematic Review and Meta-analysis. 2021.

  41. Wu J, Lv Y, Li Y, Jiang Y, Wang L, Zhang X, Sun M, Zou Y, Xu J, Zhang L. MCM3AP-AS1/miR-876-5p/WNT5A axis regulates the proliferation of prostate cancer cells. Cancer Cell Int. 2020;20:1–12.

    Article  Google Scholar 

  42. Yang M, Sun S, Guo Y, Qin J, Liu G. Long non-coding RNA MCM3AP-AS1 promotes growth and migration through modulating FOXK1 by sponging miR-138-5p in pancreatic cancer. Mol Med. 2019;25:1–10.

    Article  Google Scholar 

  43. Crombie J, LaCasce A. The treatment of Burkitt lymphoma in adults. Blood J Am Soc Hematol. 2021;137:743–50.

    CAS  Google Scholar 

  44. Casulo C, Friedberg JW. Burkitt lymphoma-a rare but challenging lymphoma. Best Pract Res Clin Haematol. 2018;31:279–84.

    Article  Google Scholar 

  45. Kalisz K, Alessandrino F, Beck R, Smith D, Kikano E, Ramaiya NH, Tirumani SH. An update on Burkitt lymphoma: a review of pathogenesis and multimodality imaging assessment of disease presentation, treatment response, and recurrence. Insights Imaging. 2019;10:1–16.

    Article  Google Scholar 

  46. Wang Q-M, Lian G-Y, Song Y, Huang Y-F, Gong Y. LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci. 2019;231:116335.

    Article  CAS  Google Scholar 

  47. Ngoc PCT, Tan SH, Tan TK, Chan MM, Li Z, Yeoh AE, Tenen DG, Sanda T. Identification of novel lncRNAs regulated by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia. 2018;32:2138–51.

    Article  Google Scholar 

  48. Huang P-S, Chung I, Lin Y-H, Lin T-K, Chen W-J, Lin K-H. The long non-coding RNA MIR503HG enhances proliferation of human ALK-negative anaplastic large-cell lymphoma. Int J Mol Sci. 2018;19:1463.

    Article  Google Scholar 

  49. Zhou M, Zhao H, Xu W, Bao S, Cheng L, Sun J. Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. Mol Cancer. 2017;16:1–13.

    Article  Google Scholar 

  50. Tarantelli C, Lupia A, Stathis A, Bertoni F. Is there a role for dual PI3K/mTOR inhibitors for patients affected with lymphoma? Int J Mol Sci. 2020;21:1060.

    Article  CAS  Google Scholar 

  51. Siddiqui N, Sonenberg N. Signalling to eIF4E in cancer. Biochem Soc Trans. 2015;43:763–72.

    Article  CAS  Google Scholar 

  52. Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:1–19.

    Article  CAS  Google Scholar 

  53. Bitterman PB, Polunovsky VA. eIF4E-mediated translational control of cancer incidence. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2015;1849:774–80.

    Article  CAS  Google Scholar 

  54. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:1–19.

    Article  Google Scholar 

  55. Blondeau JJ, Deng M, Syring I, Schrödter S, Schmidt D, Perner S, Müller SC, Ellinger J. Identification of novel long non-coding RNAs in clear cell renal cell carcinoma. Clin Epigenetics. 2015;7:1–10.

    Article  Google Scholar 

  56. Gao Y, Li H, Ma X, Fan Y, Ni D, Zhang Y, Huang Q, Liu K, Li X, Wang L. KLF6 suppresses metastasis of clear cell renal cell carcinoma via transcriptional repression of E2F1. Can Res. 2017;77:330–42.

    Article  CAS  Google Scholar 

  57. Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4-a potential biomarker and target for cancer therapy. Pharmacol Ther. 2019;198:135–59.

    Article  CAS  Google Scholar 

  58. Larrinaga G, Blanco L, Sanz B, Perez I, Gil J, Unda M, Andrés L, Casis L, López JI. The impact of peptidase activity on clear cell renal cell carcinoma survival. Am J Physiol Renal Physiol. 2012;303:F1584–91.

    Article  CAS  Google Scholar 

  59. Qiu L, Ma Y, Yang Y, Ren X, Wang D, Jia X. Pro-angiogenic and pro-inflammatory regulation by lncRNA MCM3AP-AS1-mediated upregulation of DPP4 in clear cell renal cell carcinoma. Front Oncol. 2020;10:705.

    Article  Google Scholar 

  60. Shan S, Wang Y, Zhu C. A comprehensive expression profile of tRNA-derived fragments in papillary thyroid cancer. J Clin Lab Anal. 2021;35:e23664.

    Article  CAS  Google Scholar 

  61. Peng X, Zhang K, Ma L, Xu J, Chang W. The role of long non-coding RNAs in thyroid cancer. Front Oncol. 2020;10:941–941.

    Article  Google Scholar 

  62. Liang M, Jia J, Chen L, Wei B, Guan Q, Ding Z, Yu J, Pang R, He G. LncRNA MCM3AP-AS1 promotes proliferation and invasion through regulating miR-211-5p/SPARC axis in papillary thyroid cancer. Endocrine. 2019;65:318–26.

    Article  CAS  Google Scholar 

  63. Tsui DCC, Camidge DR, Rusthoven CG. Managing central nervous system spread of lung cancer: the state of the art. J Clin Oncol. 2022;40:642–60.

    Article  Google Scholar 

  64. Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021;11:e367–e367.

    Article  CAS  Google Scholar 

  65. Jiang J, Lu Y, Zhang F, Huang J, Ren X-l, Zhang R: The Emerging Roles of Long Noncoding RNAs as Hallmarks of Lung Cancer. Frontiers in Oncology 2021, 11.

  66. Lin N-C, Hsien S-I, Hsu J-T, Chen MYC. Impact on patients with oral squamous cell carcinoma in different anatomical subsites: a single-center study in Taiwan. Sci Rep. 2021;11:15446.

    Article  CAS  Google Scholar 

  67. Hema K, Smitha T, Sheethal H, Mirnalini SA. Epigenetics in oral squamous cell carcinoma. J Oral Maxillofac Pathol. 2017;21:252.

    Article  CAS  Google Scholar 

  68. Mourad M, Jetmore T, Jategaonkar AA, Moubayed S, Moshier E, Urken ML. Epidemiological trends of head and neck cancer in the United States: a SEER population study. J Oral Maxillofac Surg. 2017;75:2562–72.

    Article  Google Scholar 

  69. Nakashima C, Yamamoto K, Fujiwara-Tani R, Luo Y, Matsushima S, Fujii K, Ohmori H, Sasahira T, Sasaki T, Kitadai Y. Expression of cytosolic malic enzyme (ME 1) is associated with disease progression in human oral squamous cell carcinoma. Cancer Sci. 2018;109:2036–45.

    Article  CAS  Google Scholar 

  70. Zhuang Z, Yu P, Xie N, Wu Y, Liu H, Zhang M, Tao Y, Wang W, Yin H, Zou B. MicroRNA-204-5p is a tumor suppressor and potential therapeutic target in head and neck squamous cell carcinoma. Theranostics. 2020;10:1433.

    Article  CAS  Google Scholar 

  71. Kong X-P, Yao J, Luo W, Feng F-K, Ma J-T, Ren Y-P, Wang D-l, Bu R-F. The expression and functional role of a FOXC1 related mRNA-lncRNA pair in oral squamous cell carcinoma. Mol Cell Biochem. 2014;394:177–86.

    Article  CAS  Google Scholar 

  72. Nishimura DY, Swiderski RE, Alward WL, Searby CC, Patil SR, Bennet SR, Kanis AB, Gastier JM, Stone EM, Sheffield VC. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet. 1998;19:140–7.

    Article  CAS  Google Scholar 

  73. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przeglad Gastroenterologiczny. 2019;14:89–103.

    CAS  Google Scholar 

  74. Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64:104–17.

    Article  Google Scholar 

  75. Zhang X, Wen L, Chen S, Zhang J, Ma Y, Hu J, Yue T, Wang J, Zhu J, Bu D. The novel long noncoding RNA CRART16 confers cetuximab resistance in colorectal cancer cells by enhancing ERBB3 expression via miR-371a-5p. Cancer Cell Int. 2020;20:1–16.

    Google Scholar 

  76. Yang Z, Zhang J, Lu D, Sun Y, Zhao X, Wang X, Zhou W, He Q, Jiang Z. Hsa_circ_0137008 suppresses the malignant phenotype in colorectal cancer by acting as a microRNA-338-5p sponge. Cancer Cell Int. 2020;20:1–12.

    CAS  Google Scholar 

  77. Zhang J, Bian Z, Jin G, Liu Y, Li M, Yao S, Zhao J, Feng Y, Wang X, Yin Y. Long non-coding RNA IQCJ-SCHIP1 antisense RNA 1 is downregulated in colorectal cancer and inhibits cell proliferation. Ann Transl Med. 2019;7:198.

    Article  CAS  Google Scholar 

  78. Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W. LncRNA–FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 2018;24:4808–19.

    Article  CAS  Google Scholar 

  79. Bian Z, Zhang J, Li M, Feng Y, Yao S, Song M, Qi X, Fei B, Yin Y, Hua D. Long non-coding RNA LINC00152 promotes cell proliferation, metastasis, and confers 5-FU resistance in colorectal cancer by inhibiting miR-139-5p. Oncogenesis. 2017;6:1–11.

    Article  CAS  Google Scholar 

  80. Gulimiheranmu M, Wang X, Zhou J. Advances in female germ cell induction from pluripotent stem cells. Stem Cells Int. 2021;2021:1–13.

    Article  Google Scholar 

  81. Zhang P, Ji D-B, Han H-B, Shi Y-F, Du C-Z, Gu J. Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol. 2014;20:12241.

    Article  CAS  Google Scholar 

  82. Chen MC, Nhan DC, Hsu CH, Wang TF, Li CC, Ho TJ, Mahalakshmi B, Chen MC, Yang LY, Huang CY. SENP1 participates in Irinotecan resistance in human colon cancer cells. J Cell Biochem. 2021;122:1277–94.

    Article  CAS  Google Scholar 

  83. Dai W, Zeng W, Lee D. lncRNA MCM3AP-AS1 inhibits the progression of colorectal cancer via the miR-19a-3p/FOXF2 axis. J Gene Med. 2021;23: e3306.

    Article  CAS  Google Scholar 

  84. Yu F-B, Sheng J, Yu J-M, Liu J-H, Qin X-X, Mou B. MiR-19a-3p regulates the Forkhead box F2-mediated Wnt/β-catenin signaling pathway and affects the biological functions of colorectal cancer cells. World J Gastroenterol. 2020;26:627.

    Article  CAS  Google Scholar 

  85. Zhang J, Zhang C, Sang L, Huang L, Du J, Zhao X. FOXF2 inhibits proliferation, migration, and invasion of Hela cells by regulating Wnt signaling pathway. Biosci Rep. 2018;38:BSR20180747.

    Article  Google Scholar 

  86. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ. Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17:678–88.

    Article  CAS  Google Scholar 

  87. Gu J-F, Wang G-Q, Gao Y-C, Dai Y-J. Overexpression of miR-599 is associated with metastasis in colorectal cancer via inhibition of SATB2. Int J Clin Exp Pathol. 2017;10:6701–9.

    Google Scholar 

  88. Song H, Pan J, Liu Y, Wen H, Wang L, Cui J, Liu Y, Hu B, Yao Z, Ji G. Increased ARPP-19 expression is associated with hepatocellular carcinoma. Int J Mol Sci. 2015;16:178–92.

    Article  Google Scholar 

  89. Horiuchi A, Williams K, Kurihara T, Nairn A, Greengard P. Purification and cDNA cloning of ARPP-16, a cAMP-regulated phosphoprotein enriched in basal ganglia, and of a related phosphoprotein, ARPP-19. J Biol Chem. 1990;265:9476–84.

    Article  CAS  Google Scholar 

  90. Du B, Wang Z, Zhang X, Feng S, Wang G, He J, Zhang B. MicroRNA-545 suppresses cell proliferation by targeting cyclin D1 and CDK4 in lung cancer cells. PLoS One. 2014;9:e88022.

    Article  Google Scholar 

  91. Wu A, Wu B, Guo J, Luo W, Wu D, Yang H, Zhen Y, Yu X, Wang H, Zhou Y. Elevated expression of CDK4 in lung cancer. J Transl Med. 2011;9:1–9.

    Article  CAS  Google Scholar 

  92. Ching Y-P, Leong VY, Lee M-F, Xu H-T, Jin D-Y. Ng IO-L: P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Can Res. 2007;67:3601–8.

    Article  CAS  Google Scholar 

  93. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  94. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

    Article  Google Scholar 

  95. Sun Z, Zhao L, Wang S, Wang H. Knockdown of long non-coding RNA LINC01006 represses the development of hepatocellular carcinoma by modulating the miR-194-5p/CADM1 axis. Ann Hepatol. 2021;27:100571.

    Article  Google Scholar 

  96. Gao X, Zhao H, Diao C, Wang X, Xie Y, Liu Y, Han J, Zhang M. miR-455-3p serves as prognostic factor and regulates the proliferation and migration of non-small cell lung cancer through targeting HOXB5. Biochem Biophys Res Commun. 2018;495:1074–80.

    Article  CAS  Google Scholar 

  97. Wang B, Zou A, Ma L, Chen X, Wang L, Zeng X, Tan T. miR-455 inhibits breast cancer cell proliferation through targeting CDK14. Eur J Pharmacol. 2017;807:138–43.

    Article  CAS  Google Scholar 

  98. Zhang L, Li X, Lu J, Qian Y, Qian T, Wu X, Xu Q. The EGFR polymorphism increased the risk of hepatocellular carcinoma through the miR-3196-dependent approach in Chinese Han population. Pharmacogenomics Pers Med. 2021;14:469.

    Google Scholar 

  99. Ning T, Peng Z, Li S, Qu Y, Zhang H, Duan J, Wang X, Yang H, Liu R, Deng T. miR-455 inhibits cell proliferation and migration via negative regulation of EGFR in human gastric cancer. Oncol Rep. 2017;38:175–82.

    Article  CAS  Google Scholar 

  100. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang X-S, Bannon F, Ahn JV, Johnson CJ, Bonaventure A. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). The Lancet. 2015;385:977–1010.

    Article  Google Scholar 

  101. Alberts S, Cervantes A, Van de Velde C. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14:31–6.

    Article  Google Scholar 

  102. Ashraf N, Hoffe S, Kim R. Adjuvant treatment for gastric cancer: chemotherapy versus radiation. Oncologist. 2013;18:1013.

    Article  Google Scholar 

  103. Li C-Y, Liang G-Y, Yao W-Z, Sui J, Shen X, Zhang Y-Q, Peng H, Hong W-W, Ye Y-C, Zhang Z-Y. Integrated analysis of long non-coding RNA competing interactions reveals the potential role in progression of human gastric cancer. Int J Oncol. 2016;48:1965–76.

    Article  CAS  Google Scholar 

  104. Monteleone NJ, Lutz CS. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget. 2017;8:71292.

    Article  Google Scholar 

  105. Ivanova T, Zouridis H, Wu Y, Cheng LL, Tan IB, Gopalakrishnan V, Ooi CH, Lee J, Qin L, Wu J. Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut. 2013;62:22–33.

    Article  CAS  Google Scholar 

  106. Dai Q, Zhang T, Pan J, Li C. LncRNA UCA1 promotes cisplatin resistance in gastric cancer via recruiting EZH2 and activating PI3K/AKT pathway. J Cancer. 2020;11:3882.

    Article  CAS  Google Scholar 

  107. Yang Z, Jiang S, Cheng Y, Li T, Hu W, Ma Z, Chen F, Yang Y. FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Ther Adv Med Oncol. 2017;9:797–816.

    Article  CAS  Google Scholar 

  108. Barbato S, Solaini G, Fabbri M. MicroRNAs in oncogenesis and tumor suppression. Int Rev Cell Mol Biol. 2017;333:229–68.

    Article  CAS  Google Scholar 

  109. Glehen O, Gilly FN, Arvieux C, Cotte E, Boutitie F, Mansvelt B, Bereder JM, Lorimier G, Quenet F, Elias D. Peritoneal carcinomatosis from gastric cancer: a multi-institutional study of 159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Ann Surg Oncol. 2010;17:2370–7.

    Article  Google Scholar 

  110. Huang X, Zhi X, Gao Y, Ta N, Jiang H, Zheng J. LncRNAs in pancreatic cancer. Oncotarget. 2016;7:57379.

    Article  Google Scholar 

  111. Zhao Y-X, Chen S-R, Su P-P, Huang F-H, Shi Y-C, Shi Q-Y, Lin S. Using mesenchymal stem cells to treat female infertility: an update on female reproductive diseases. Stem Cells Int. 2019;2019:9071720–9071720.

    Article  Google Scholar 

  112. Wencong M, Jinghan W, Yong Y, Jianyang A, Bin L, Qingbao C, Chen L, Xiaoqing J. FOXK1 promotes proliferation and metastasis of gallbladder cancer by activating AKT/mTOR signaling pathway. Front Oncol. 2020;10:545.

    Article  Google Scholar 

  113. Yang M, Sun S, Guo Y, Qin J, Liu G. Long non-coding RNA MCM3AP-AS1 promotes growth and migration through modulating FOXK1 by sponging miR-138-5p in pancreatic cancer. Mol Med. 2019;25:55.

    Article  Google Scholar 

  114. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18:3–9.

    Google Scholar 

  115. Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20:S2–8.

    Article  Google Scholar 

  116. Zeng T, Li L, Zhou Y, Gao L. Exploring long noncoding RNAs in glioblastoma: regulatory mechanisms and clinical potentials. Int J Genomics. 2018;2018:2895958–2895958.

    Article  Google Scholar 

  117. Yadav B, Pal S, Rubstov Y, Goel A, Garg M, Pavlyukov M, Pandey AK. LncRNAs associated with glioblastoma: from transcriptional noise to novel regulators with a promising role in therapeutics. Mol Ther Nucleic Acids. 2021;24:728–42.

    Article  CAS  Google Scholar 

  118. Ji Y, Gu Y, Hong S, Yu B, Zhang JH, Liu JN. Comprehensive analysis of lncRNA-TF crosstalks and identification of prognostic regulatory feedback loops of glioblastoma using lncRNA/TF-mediated ceRNA network. J Cell Biochem. 2020;121:755–67.

    Article  CAS  Google Scholar 

  119. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10:63–89.

    Article  CAS  Google Scholar 

  120. Jiang G, Su Z, Liang X, Huang Y, Lan Z, Jiang X. Long non-coding RNAs in prostate tumorigenesis and therapy. Mol Clin Oncol. 2020;13:1–1.

    Article  Google Scholar 

  121. Wong SK, Mohamad N-V, Giaze TR, Chin K-Y, Mohamed N, Ima-Nirwana S. Prostate cancer and bone metastases: the underlying mechanisms. Int J Mol Sci. 2019;20:2587.

    Article  CAS  Google Scholar 

  122. Wu J, Lv Y, Li Y, Jiang Y, Wang L, Zhang X, Sun M, Zou Y, Xu J, Zhang L. MCM3AP-AS1/miR-876-5p/WNT5A axis regulates the proliferation of prostate cancer cells. Cancer Cell Int. 2020;20:307.

    Article  CAS  Google Scholar 

  123. Ren Z, Yang T, Zhang P, Liu K, Liu W, Wang P. SKA2 mediates invasion and metastasis in human breast cancer via EMT. Mol Med Rep. 2019;19:515–23.

    CAS  Google Scholar 

  124. Yu C, Cao H, He X, Sun P, Feng Y, Chen L, Gong H. Cyclin-dependent kinase inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regulating cell cycle and DNA replication signaling. Biomed Pharmacother. 2017;96:1109–18.

    Article  CAS  Google Scholar 

  125. Yaqinuddin A, Qureshi SA, Qazi R, Farooq S, Abbas F. DNMT1 silencing affects locus specific DNA methylation and increases prostate cancer derived PC3 cell invasiveness. J Urol. 2009;182:756–61.

    Article  CAS  Google Scholar 

  126. Cavaliere AF, Perelli F, Zaami S, Piergentili R, Mattei A, Vizzielli G, Scambia G, Straface G, Restaino S, Signore F: Towards Personalized Medicine: Non-Coding RNAs and Endometrial Cancer. In Healthcare. Multidisciplinary Digital Publishing Institute; 2021: 965.

  127. Piura E, Piura B. Brain metastases from endometrial carcinoma. Int Sch Res Notices. 2012;2012:1–13.

    Google Scholar 

  128. Rosa-Rosa JM, Leskelä S, Cristóbal-Lana E, Santón A, López-García MÁ, Muñoz G, Pérez-Mies B, Biscuola M, Prat J, Esther OE. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas. Mod Pathol. 2016;29:1390–8.

    Article  CAS  Google Scholar 

  129. Yu J, Fan Q, Li L. The MCM3AP-AS1/miR-126/VEGF axis regulates cancer cell invasion and migration in endometrioid carcinoma. World J Surg Oncol. 2021;19:1–8.

    Article  Google Scholar 

  130. Zhang X, Zeng Q, Cai W, Ruan W. Trends of cervical cancer at global, regional, and national level: data from the Global Burden of Disease study 2019. BMC Public Health. 2021;21:894.

    Article  Google Scholar 

  131. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382:889–99.

    Article  Google Scholar 

  132. Small W Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, Jhingran A, Kitchener HC, Mileshkin LR, Viswanathan AN. Cervical cancer: a global health crisis. Cancer. 2017;123:2404–12.

    Article  Google Scholar 

  133. Aggarwal P. Cervical cancer: can it be prevented? World J Clin Oncol. 2014;5:775–80.

    Article  Google Scholar 

  134. Zhang Y, Luo G, Li M, Guo P, Xiao Y, Ji H, Hao Y. Global patterns and trends in ovarian cancer incidence: age, period and birth cohort analysis. BMC Cancer. 2019;19:984.

    Article  CAS  Google Scholar 

  135. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2:1–22.

    Article  Google Scholar 

  136. Zhan L, Li J, Wei B. Long non-coding RNAs in ovarian cancer. J Exp Clin Cancer Res. 2018;37:1–13.

    Article  Google Scholar 

  137. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers. 2021;13:4287.

    Article  Google Scholar 

  138. Simone V, D’Avenia M, Argentiero A, Felici C, Rizzo FM, De Pergola G, Silvestris F. Obesity and breast cancer: molecular interconnections and potential clinical applications. Oncologist. 2016;21:404–17.

    Article  CAS  Google Scholar 

  139. Loftus KM, Cui H, Coutavas E, King DS, Ceravolo A, Pereiras D, Solmaz SR. Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F. Cell Cycle. 2017;16:1414–29.

    Article  CAS  Google Scholar 

  140. Tang T-P, Qin C-X, Yu H. MCM3AP-AS1 regulates proliferation, apoptosis, migration, and invasion of breast cancer cells via binding with ZFP36. Trans Cancer Res. 2021;10:4478–88.

    Article  CAS  Google Scholar 

  141. Sun P, Feng Y, Guo H, Li R, Yu P, Zhou X, Pan Z, Liang Y, Yu B, Zheng Y. MiR-34a inhibits cell proliferation and induces apoptosis in human nasopharyngeal carcinoma by targeting lncRNA MCM3AP-AS1. Cancer Manag Res. 2020;12:4799.

    Article  CAS  Google Scholar 

  142. Zhou M, Bian Z, Liu B, Zhang Y, Cao Y, Cui K, Sun S, Li J, Zhang J, Wang X. Long noncoding RNA MCM3AP-AS1 enhances cell proliferation and metastasis in colorectal cancer by regulating miR-193a-5p/SENP1. Cancer Med. 2021;10:2470–81.

    Article  CAS  Google Scholar 

  143. Riahi A, Hosseinpour-Feizi M, Rajabi A, Akbarzadeh M, Montazeri V, Safaralizadeh R. Overexpression of long non-coding RNA MCM3AP-AS1 in breast cancer tissues compared to adjacent non-tumour tissues. Br J Biomed Sci. 2021;78:53–7.

    Article  CAS  Google Scholar 

  144. Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J Exp Pharmacol. 2021;13:303.

    Article  Google Scholar 

  145. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83.

    Article  CAS  Google Scholar 

  146. Bierhoff H: Analysis of lncRNA-protein interactions by RNA-protein pull-down assays and RNA immunoprecipitation (RIP). In Cellular Quiescence. Springer; 2018: 241–250

  147. Ferre F, Colantoni A, Helmer-Citterich M. Revealing protein–lncRNA interaction. Brief Bioinform. 2016;17:106–16.

    Article  CAS  Google Scholar 

  148. Zhang P, Zhou H, Lu K, Lu Y, Wang Y, Feng T. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. Onco Targets Ther. 2018;11:291.

    Article  Google Scholar 

  149. Wang Y, Zhang M, Zhou F. Biological functions and clinical applications of exosomal long non-coding RNAs in cancer. J Cell Mol Med. 2020;24:11656–66.

    Article  CAS  Google Scholar 

  150. Zhao W, Liu Y, Zhang C, Duan C. Multiple roles of exosomal long noncoding RNAs in cancers. Biomed Res Int. 2019;2019:1460572.

    Article  Google Scholar 

  151. Lang H, Hu G, Chen Y, Liu Y, Tu W, Lu Y, Wu L, Xu G. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci. 2017;21:959–72.

    Google Scholar 

  152. Dong P, Xiong Y, Yue J, Hanley JBS, Kobayashi N, Todo Y, Watari H. Exploring lncRNA-mediated regulatory networks in endometrial cancer cells and the tumor microenvironment: advances and challenges. Cancers. 2019;11:234.

    Article  CAS  Google Scholar 

  153. Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metab. 2018;27:714–39.

    Article  CAS  Google Scholar 

  154. Roberts TC, Langer R, Wood MJ. Advances in oligonucleotide drug delivery. Nat Rev Drug Discovery. 2020;19:673–94.

    Article  CAS  Google Scholar 

  155. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  Google Scholar 

  156. Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinf. 2016;14:42–54.

    Article  Google Scholar 

  157. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.

    Article  CAS  Google Scholar 

  158. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.

    Article  CAS  Google Scholar 

  159. Jiang M-C, Ni J-J, Cui W-Y, Wang B-Y, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res. 2019;9:1354.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SHA, FGH, MSH, SHU, MGH, AM, MK, MCH, and ZN have made contributions to the writing of the manuscript. SE. KH., and M. F. have made contributions to the design of the figure and the revision of the manuscript. All authors have approved the submitted version of the article and have agreed to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maryam Farzaneh or Seyed Esmaeil Khoshnam.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizidoost, S., Ghaedrahmati, F., Sheykhi-Sabzehpoush, M. et al. The role of LncRNA MCM3AP-AS1 in human cancer. Clin Transl Oncol 25, 33–47 (2023). https://doi.org/10.1007/s12094-022-02904-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02904-w

Keywords

Navigation