Skip to main content

Advertisement

Log in

IL-6 secretion of CD4+ T cells stimulated by LC3-positive extracellular vesicles in human epithelial ovarian cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Ovarian cancer (OC) as the most fatal gynecological malignancy worldwide, with epithelial ovarian cancer (EOC) being the predominant and most lethal form, poses a serious threat to human health. LC3-positive extracellular vesicles (LC3+ EVs) promote tumorigenesis by educating CD4+ T cells in a murine melanoma model. However, regulation of LC3+ EVs in human EOC remains largely unknown. 

Methods

Differential analysis of Rab8a, Hsp90α and Il6 expression was performed using GEPIA2. The number of LC3+ EVs and the frequency of Heat shock protein 90α+ LC3+ EVs (HSP90α+ LC3+ EVs) in the ascites of EOC patients were tested by flow cytometry. IL-6, IL-10, IFN-γ, IL-4 and TGF-β were measured by ELISA. CD4+ T cells were isolated from peripheral blood of healthy human donors using MACS magnetic bead technology. 

Results

Higher Rab8a, Hsp90a and Il6 expression of cancer tissues compared with normal adjacent tissues in OC were found. The level of IL-6 was positively correlated with LC3+ EVs number, HSP90α+ LC3+ EVs percentage in the ascites, and ROMA index of the patient. In addition, elevated IL-6 production by CD4+ T cells induced by LC3+ EVs was observed, which was suppressed by anti-HSP90α or anti-TLR2. 

Conclusions

LC3+ EVs level and HSP90α+ LC3+ EVs percentage were associated with elevated IL-6 in the ascites of EOC patients. HSP90α on LC3+ EVs from human EOC could stimulate CD4+ T cell production of IL-6 via TLR2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LC3+ EVs:

LC3-positive extracellular vesicles

HSP90α:

Heat shock protein 90α

EOC:

Epithelial ovarian cancer

DAMPs:

Damage-associated molecular pattern molecules

DFS:

Disease-free survival

PFS:

Progression-free survival

OS:

Overall survival

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  2. Vargas-Hernandez VM, Moreno-Eutimio MA, Acosta-Altamirano G, Vargas-Aguilar VM. Management of recurrent epithelial ovarian cancer. Gland Surg. 2014;3(3):198–202. https://doi.org/10.3978/j.issn.2227-684X.2013.10.01.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  4. Del CJ, Matulonis UA, Malander S, Provencher D, Mahner S, Follana P, et al. Niraparib maintenance therapy in patients with recurrent ovarian cancer after a partial response to the last platinum-based chemotherapy in the ENGOT-OV16/NOVA trial. J Clin Oncol. 2019;37(32):2968–73. https://doi.org/10.1200/JCO.18.02238.

    Article  Google Scholar 

  5. Van Gorp T, Cadron I, Despierre E, Daemen A, Leunen K, Amant F, et al. HE4 and CA125 as a diagnostic test in ovarian cancer: prospective validation of the risk of ovarian malignancy algorithm. Br J Cancer. 2011;104(5):863–70. https://doi.org/10.1038/sj.bjc.6606092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DuPage M, Bluestone JA. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol. 2016;16(3):149–63. https://doi.org/10.1038/nri.2015.18.

    Article  CAS  PubMed  Google Scholar 

  7. Borst J, Ahrends T, Babala N, Melief C, Kastenmuller W. CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–47. https://doi.org/10.1038/s41577-018-0044-0.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang S, Dupont N, Castillo EF, Deretic V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun. 2013;5(5):471–9. https://doi.org/10.1159/000346707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin Z, Liu X, Ariosa A, Huang H, Jin M, Karbstein K, et al. Psp2, a novel regulator of autophagy that promotes autophagy-related protein translation. Cell Res. 2019;29(12):994–1008. https://doi.org/10.1038/s41422-019-0246-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mutsafi Y, Altan-Bonnet N. Enterovirus transmission by secretory autophagy. Viruses. 2018;10(3):139. https://doi.org/10.3390/v10030139.

    Article  CAS  PubMed Central  Google Scholar 

  11. Son SM, Cha MY, Choi H, Kang S, Choi H, Lee MS, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12(5):784–800.

    Article  CAS  Google Scholar 

  12. Yang Y, Qin M, Bao P, Xu W, Xu J. Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of alpha-synuclein via exosome. PLoS ONE. 2017;12(7): e180892. https://doi.org/10.1371/journal.pone.0180892.

    Article  CAS  Google Scholar 

  13. Gonzalez CD, Resnik R, Vaccaro MI. Secretory autophagy and its relevance in metabolic and degenerative disease. Front Endocrinol (Lausanne). 2020;11:266. https://doi.org/10.3389/fendo.2020.00266.

    Article  Google Scholar 

  14. Son SM, Kang S, Choi H, Mook-Jung I. Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol Neurodegener. 2015;10:56. https://doi.org/10.1186/s13024-015-0054-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Padmanabhan S, Manjithaya R. Facets of autophagy based unconventional protein secretion-the road less traveled. Front Mol Biosci. 2020;7: 586483. https://doi.org/10.3389/fmolb.2020.586483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Wang LX, Pang P, Cui Z, Aung S, Haley D, et al. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin Cancer Res. 2011;17(22):7047–57. https://doi.org/10.1158/1078-0432.CCR-11-0951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou M, Wen Z, Cheng F, Ma J, Li W, Ren H, et al. Tumor-released autophagosomes induce IL-10-producing B cells with suppressive activity on T lymphocytes via TLR2-MyD88-NF-kappaB signal pathway. Oncoimmunology. 2016;5(7): e1180485. https://doi.org/10.1080/2162402X.2016.1180485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen YQ, Li PC, Pan N, Gao R, Wen ZF, Zhang TY, et al. Tumor-released autophagosomes induces CD4(+) T cell-mediated immunosuppression via a TLR2-IL-6 cascade. J Immunother Cancer. 2019;7(1):178. https://doi.org/10.1186/s40425-019-0646-5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crispim P, Jammal MP, Antao P, Micheli DC, Tavares-Murta BM, Murta E, et al. IL6, IL8, and IL10 in the distinction of malignant ovarian neoplasms and endometriomas. Am J Reprod Immunol. 2020;84(6): e13309. https://doi.org/10.1111/aji.13309.

    Article  CAS  PubMed  Google Scholar 

  20. Narayan V, Thompson EW, Demissei B, Ho JE, Januzzi JJ, Ky B. Mechanistic biomarkers informative of both cancer and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(21):2726–37. https://doi.org/10.1016/j.jacc.2020.03.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–48. https://doi.org/10.1038/nrclinonc.2018.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang ZY, Zhang JA, Wu XJ, Liang YF, Lu YB, Gao YC, et al. IL-6 Inhibition reduces stat3 activation and enhances the antitumor effect of carboplatin. Mediators Inflamm. 2016;2016:8026494. https://doi.org/10.1155/2016/8026494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Browning L, Patel MR, Horvath EB, Tawara K, Jorcyk CL. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag Res. 2018;10:6685–93. https://doi.org/10.2147/CMAR.S179189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Lima CA, Silva RI, Martins-Filho A, Cobo MD, Martins TB, Candido ME, et al. Cytokines in peritoneal fluid of ovarian neoplasms. J Obstet Gynaecol. 2020;40(3):401–5. https://doi.org/10.1080/01443615.2019.1633516.

    Article  CAS  PubMed  Google Scholar 

  25. Rodrigues I, Martins-Filho A, Micheli DC, Lima CA, Tavares-Murta BM, Murta E, et al. IL-6 and IL-8 as Prognostic Factors in Peritoneal Fluid of Ovarian Cancer. Immunol Invest. 2020;49(5):510–21. https://doi.org/10.1080/08820139.2019.1691222.

    Article  CAS  PubMed  Google Scholar 

  26. Kampan NC, Madondo MT, Reynolds J, Hallo J, McNally OM, Jobling TW, et al. Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer. Sci Rep. 2020;10(1):2213. https://doi.org/10.1038/s41598-020-59009-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wen ZF, Liu H, Gao R, Zhou M, Ma J, Zhang Y, et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immunother Cancer. 2018;6(1):151. https://doi.org/10.1186/s40425-018-0452-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang YC, Wu YS, Hung CY, Wang SA, Young MJ, Hsu TI, et al. USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and beta-TrCP and promotes cancer malignancy. Nat Commun. 2018;9(1):3996. https://doi.org/10.1038/s41467-018-06178-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996–3005. https://doi.org/10.1073/pnas.1819728116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen CC, Chen LL, Li CP, Hsu YT, Jiang SS, Fan CS, et al. Myeloid-derived macrophages and secreted HSP90alpha induce pancreatic ductal adenocarcinoma development. Oncoimmunology. 2018;7(5): e1424612. https://doi.org/10.1080/2162402X.2018.1424612.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen WS, Chen CC, Chen LL, Lee CC, Huang TS. Secreted heat shock protein 90alpha (HSP90alpha) induces nuclear factor-kappaB-mediated TCF12 protein expression to down-regulate E-cadherin and to enhance colorectal cancer cell migration and invasion. J Biol Chem. 2013;288(13):9001–10. https://doi.org/10.1074/jbc.M112.437897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao R, Ma J, Wen Z, Yang P, Zhao J, Xue M, et al. Tumor cell-released autophagosomes (TRAP) enhance apoptosis and immunosuppressive functions of neutrophils. Oncoimmunology. 2018;7(6): e1438108. https://doi.org/10.1080/2162402X.2018.1438108.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We are grateful for the support from grants from the National Natural Science Foundation of China [NO. 8187101983], and Maternal and Child Health Research Project of Jiangsu Province [F201923].

Author information

Authors and Affiliations

Authors

Contributions

YLC, NP and HJW designed this study. XLZ and XRW performed the experiments. XLZ and HJW wrote the manuscript, performed the literature search. DW, XJ, LX, QY, JYG, and YR collected the clinical data and helped write the manuscript. YLC and NP were responsible for manuscript revision. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ning Pan or Yun-lang Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Ethics approval

All the human experiments were approved by the Ethics Committee for Human Studies of Southeast University and performed under protocol 2019ZDSYLL021.

Informed consent

Informed consent was obtained from all the patients

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XL., Wang, HJ., Wang, XR. et al. IL-6 secretion of CD4+ T cells stimulated by LC3-positive extracellular vesicles in human epithelial ovarian cancer. Clin Transl Oncol 24, 2222–2230 (2022). https://doi.org/10.1007/s12094-022-02883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02883-y

Keywords

Navigation