Skip to main content

Advertisement

Log in

The application value of CDFI and SMI combined with serological markers in distinguishing benign and malignant thyroid nodules

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to explore the application value of CDFI and SMI combined with serological markers in distinguishing benign and malignant thyroid nodules.

Method

A total of 192 patients with thyroid nodules admitted to our hospital from July 2019 to December 2020 were selected as subjects. Color Doppler blood flow imaging (CDFI) and supermicro blood flow imaging (SMI) methods are used to detect the blood flow of patients and the levels of serum thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb), and thyroid stimulating hormone (TSH). The receiver operating characteristic curve (ROC curve) was used to observe the sensitivity and specificity of serological markers for distinguishing benign and malignant thyroid nodules, and combined with CDFI and SMI to observe the sensitivity and specificity for distinguishing benign and malignant thyroid nodules.

Results

The levels of TgAb, TPOAb and TSH in benign thyroid nodules were lower than those of the malignant group, and the difference was statistically significant (P < 0.01). There was no statistically significant difference between benign and malignant thyroid nodules in the presence or absence of the capsule and the presence or absence of vocal halo (P > 0.05), while the differences in the nodule morphology, boundary, internal echo and internal calcification were statistically significant (P < 0.01).

Conclusion

CDFI and SMI combined with serological index detection have higher value in the differential diagnosis of thyroid cancer, which can significantly improve the sensitivity and specificity of differential diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grani G, Sponziello M, Pecce V, Ramundo V, Durante C. Contemporary thyroid nodule evaluation and management. J Clin Endocrinol Metab. 2020;105(9):2869–83.

    Article  Google Scholar 

  2. Pemayun TG. Current diagnosis and management of thyroid nodules. Acta Med Indones. 2016;48(3):247–57.

    PubMed  Google Scholar 

  3. Wong R, Farrell SG, Grossmann M. Thyroid nodules: diagnosis and management. Med J Aust. 2018;209(2):92–8.

    Article  Google Scholar 

  4. Perri F, Giordano A, Pisconti S, Ionna F, Chiofalo MG, Longo F, Leopardo D, Della Vittoria Scarpati G, Pezzullo L. Thyroid cancer management: from a suspicious nodule to targeted therapy. Anticancer Drugs. 2018;29(6):483–90.

    Article  CAS  Google Scholar 

  5. Singaporewalla RM, Hwee J, Lang TU, Desai V. Clinico-pathological correlation of thyroid nodule ultrasound and cytology using the TIRADS and Bethesda classifications. World J Surg. 2017;41(7):1807–11.

    Article  CAS  Google Scholar 

  6. Bauer AJ. Thyroid nodules in children and adolescents. Curr Opin Endocrinol Diabetes Obes. 2019;26(5):266–74.

    Article  CAS  Google Scholar 

  7. Bond RL, Midla LT, Gordon ED, et al. Effect of student transrectal palpation on early pregnancy loss in dairy cattle. J Dairy Sci. 2019;102(10):9236–40.

    Article  CAS  Google Scholar 

  8. Lu S, Jingzhuo S. Nonlinear Hammerstein model of ultrasonic motor for position control using differential evolution algorithm. Ultrasonics. 2019;94:20–7.

    Article  Google Scholar 

  9. Chen L, Gao YH, Chen J, Yao YJ, Wang R, Yu Q, Hu B, Jiang LX. Diagnosis of subungual glomus tumors with 18 MHz ultrasound and CDFI. Sci Rep. 2020;10(1):17848.

    Article  CAS  Google Scholar 

  10. Wang XN, Zhao Q, Li DJ, Wang ZY, Chen W, Li YF, Cui R, Shen L, Wang RK, Peng XY, Yang WL. Quantitative evaluation of primary retinitis pigmentosa patients using colour Doppler flow imaging and optical coherence tomography angiography. Acta Ophthalmol. 2019;97(7):e993–7.

    Article  Google Scholar 

  11. Zhu YC, Zu DM, Zhang Y, Shan J, Shi XR, Deng SH, Jiang Q. A comparative study on superb microvascular imaging and conventional ultrasonography in differentiating BI-RADS 4 breast lesions. Oncol Lett. 2019;18(3):3202–10.

    PubMed  PubMed Central  Google Scholar 

  12. Jiang W, Chen Y, Song X, Shao Y, Ning Z, Gu W. Pim-1 inhibitor SMI-4a suppresses tumor growth in non-small cell lung cancer via PI3K/AKT/mTOR pathway. Onco Targets Ther. 2019;12:3043–50.

    Article  CAS  Google Scholar 

  13. Lv DL, Chen L, Ding W, Zhang W, Wang HL, Wang S, Liu WB. Ginsenoside G-Rh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death. Chin Med. 2018;13:11.

    Article  Google Scholar 

  14. Yu X, Li Z, Ren M, Xi J, Wu J, Ji Y. Superb microvascular imaging (SMI) for evaluating hand joint lesions in patients with rheumatoid arthritis in clinical remission. Rheumatol Int. 2018;38(10):1885–90.

    Article  Google Scholar 

  15. Li W, Ming H, Sun D, Li W, Wang D, Zhang G, Tan J. The relationship between BRAFV600E, NF-kappaB and TgAb expression in papillary thyroid carcinoma. Pathol Res Pract. 2017;213(3):183–8.

    Article  CAS  Google Scholar 

  16. Wang C, Niu Q, Lv H, Li Q, Ma Y, Tan J, Liu C. Elevated TPOAb is a strong predictor of autoimmune development in patients of type 2 diabetes mellitus and non-alcoholic fatty liver disease: a case–control study. Diabetes Metab Syndr Obes. 2020;13:4369–78.

    Article  Google Scholar 

  17. Tamada D, Kitamura T, Takahara M, Tanaka T, Takeda M, Otsuki M, Shimomura I. TSH ratio as a novel diagnostic method for Cushing’s syndrome. Endocr J. 2018;65(8):841–8.

    Article  CAS  Google Scholar 

  18. World Health Organization. Human papillomavirus vaccines: WHO position paper, may 2017-recommendations. Vaccine. 2017;35(43):5753–5.

    Article  Google Scholar 

  19. Zhu YC, Zhang Y, Deng SH, Jiang Q. Diagnostic performance of superb microvascular imaging (SMI) combined with shear-wave elastography in evaluating breast lesions. Med Sci Monit. 2018;24:5935–42.

    Article  Google Scholar 

  20. Ma Y, Li G, Li J, Ren WD. The diagnostic value of superb microvascular imaging (SMI) in detecting blood flow signals of breast lesions: a preliminary study comparing smi to color doppler flow imaging. Medicine (Baltimore). 2015;94(36): e1502.

    Article  Google Scholar 

  21. Zhou J, Yin L, Wei X, Zhang S, Song Y, Luo B, et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS. Endocrine. 2020;70(2):256–79.

    Article  CAS  Google Scholar 

  22. Zhang B, Tian J, Pei S, Chen Y, He X, Dong Y, Zhang L, Mo X, Huang W, Cong S, Zhang S. Machine learning-assisted system for thyroid nodule diagnosis. Thyroid. 2019;29(6):858–67.

    Article  Google Scholar 

  23. Burman KD, Wartofsky L. Clinical practice. Thyroid nodules. N Engl J Med. 2015;373(24):2347–56.

    Article  CAS  Google Scholar 

  24. Chen J, You H, Li K. A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput Methods Programs Biomed. 2020;185: 105329.

    Article  Google Scholar 

  25. Angell TE, Alexander EK. Thyroid nodules and thyroid cancer in the pregnant woman. Endocrinol Metab Clin North Am. 2019;48(3):557–67.

    Article  Google Scholar 

  26. Xiao S, Ju LK. Energy-efficient ultrasonic release of bacteria and particulates to facilitate ingestion by phagotrophic algae for waste sludge treatment and algal biomass and lipid production. Chemosphere. 2018;209:588–98.

    Article  CAS  Google Scholar 

  27. Xu P, Yang M, Liu Y, Li YP, Zhang H, Shao GR. Breast non-mass-like lesions on contrast-enhanced ultrasonography: feature analysis, breast image reporting and data system classification assessment. World J Clin Cases. 2020;8(4):700–12.

    Article  Google Scholar 

  28. Diao X, Zhan J, Chen L, Chen Y, Cao H. Role of superb microvascular imaging in differentiating between malignant and benign solid breast masses. Clin Breast Cancer. 2020;20(6):e786–93.

    Article  Google Scholar 

  29. Niehorster DC, Nyström M. SMITE: a toolbox for creating psychophysics toolbox and psychopy experiments with SMI eye trackers. Behav Res Methods. 2020;52(1):295–304.

    Article  Google Scholar 

  30. Lu R, Meng Y, Zhang Y, Zhao W, Wang X, Jin M, Guo R. Superb microvascular imaging (SMI) compared with conventional ultrasound for evaluating thyroid nodules. BMC Med Imaging. 2017;17(1):65.

    Article  Google Scholar 

  31. Liu SQ, Ma YB, Han ZH, Xie X, Wang CY, Tao Y, Chen H, Liu YP. The value of SMI in the evaluation of interventional therapy of liver cancer. Zhonghua Gan Zang Bing Za Zhi. 2017;25(7):512–6.

    CAS  PubMed  Google Scholar 

  32. Ramírez-Solís A, Bartulovich CO, León-Pimentel CI, Saint-Martin H, Boekell NG, Flowers RA. Proton donor effects on the reactivity of SmI (2). Experimental and theoretical studies on methanol solvation vs. aqueous solvation. Dalton Trans. 2020;49:7897–902.

    Article  Google Scholar 

  33. Mayson SE, Haugen BR. Molecular diagnostic evaluation of thyroid nodules. Endocrinol Metab Clin North Am. 2019;48(1):85–97.

    Article  Google Scholar 

  34. Jo K, Lim DJ. Clinical implications of anti-thyroglobulin antibody measurement before surgery in thyroid cancer. Korean J Intern Med. 2018;33(6):1050–7.

    Article  CAS  Google Scholar 

  35. Zhang Y, Sun W, Zhu S, Huang Y, Huang Y, Gao Y, Zhang J, Yang H, Guo X. The impact of thyroid function and TPOAb in the first trimester on pregnancy outcomes: a retrospective study in Peking. J Clin Endocrinol Metab. 2020;105(3):dgz167.

    Article  Google Scholar 

  36. Kahaly GJ, Diana T, Olivo PD. TSH receptor antibodies: relevance & utilITY. Endocr Pract. 2020;26(1):97–106.

    Article  Google Scholar 

  37. Zwaveling-Soonawala N, van Trotsenburg ASP, Verkerk PH. TSH and FT4 concentrations in congenital central hypothyroidism and mild congenital thyroidal hypothyroidism. J Clin Endocrinol Metab. 2018;103(4):1342–8.

    PubMed  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

FL conceived and designed the study, and drafted the manuscript. WS and LL collected, analyzed and interpreted the experimental data. ZM and JS revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianli Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Ethical Committee of Yantaishan Hospital and conducted in accordance with the ethical standards.

Informed consent

Subjects signed the informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Sun, W., Liu, L. et al. The application value of CDFI and SMI combined with serological markers in distinguishing benign and malignant thyroid nodules. Clin Transl Oncol 24, 2200–2209 (2022). https://doi.org/10.1007/s12094-022-02880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02880-1

Keywords

Navigation