Skip to main content

Advertisement

Log in

BAG family proteins contributes to autophagy-mediated multidrug resistance of tumor

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) is a significant cause of tumor treatment failure. Accumulating evidence suggests that autophagy plays a significant role in the development of MDR. Autophagy is a conserved mechanism that maintains tumor homeostasis by removing damaged mitochondria. However, the specific regulatory mechanism is unclear. Here, we summarize recent studies on the role of autophagy in the development of MDR and the initiation of mitophagy by Bcl-2-associated athanogene (BAG) family proteins. Additionally, this mini-review emphasizes the regulatory role of BAG family proteins, which maintain mitochondrial homeostasis by regulating the PINK1/Parkin pathway. Elucidation of the regulatory mechanisms of mitophagy may foster the development of clinical therapeutic strategies for MDR tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elzahabi HSA, Nossier ES, Khalifa NM, Alasfoury RA, El-Manawaty MA. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3-d]pyrimidine scaffold. J Enzym Inhib Med Ch. 2018;33(1):546–57.

    Article  CAS  Google Scholar 

  2. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1–2):11–42. https://doi.org/10.1016/j.cell.2018.09.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strappazzon F, Vietri-Rudan M, Campello S, Nazio F, Florenzano F, Fimia GM, Piacentini M, Levine B, Cecconi F. Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J. 2011;30(7):1195–208. https://doi.org/10.1038/emboj.2011.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Widden H, Kaczmarczyk A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cancer Res. 2019;79:13.

    Article  Google Scholar 

  5. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Bio. 2019;20(3):175–93.

    Article  CAS  Google Scholar 

  6. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18(7):452–64.

    Article  CAS  Google Scholar 

  7. Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AHH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ, Ibrahim ME, Rauch C. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015. https://doi.org/10.1186/s12935-015-0221-1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Youn YS, Bae YH. Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev. 2018;130:3–11. https://doi.org/10.1016/j.addr.2018.05.008.

    Article  CAS  PubMed  Google Scholar 

  9. Behl C. Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol Sci. 2016;37(8):672–88. https://doi.org/10.1016/j.tips.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  10. Rauch JN, Zuiderweg ER, Gestwicki JE. Non-canonical interactions between heat shock cognate protein 70 (Hsc70) and Bcl2-associated anthanogene (BAG) co-chaperones are important for client release. J Biol Chem. 2016;291(38):19848–57. https://doi.org/10.1074/jbc.M116.742502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gurusamy N, Lekli I, Gherghiceanu M, Popescu LM, Das DK. BAG-1 induces autophagy for cardiac cell survival. Autophagy. 2009;5(1):120–1. https://doi.org/10.4161/auto.5.1.7303.

    Article  CAS  PubMed  Google Scholar 

  12. Rosati A, Graziano V, De Laurenzi V, Pascale M, Turco MC. BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis. 2011;2: e141. https://doi.org/10.1038/cddis.2011.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Behl C. BAG3 and friends: co-chaperones in selective autophagy during aging and disease. Autophagy. 2011;7(7):795–8. https://doi.org/10.4161/auto.7.7.15844.

    Article  CAS  PubMed  Google Scholar 

  14. Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016;30(17):1913–30. https://doi.org/10.1101/gad.287524.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20(7):436–50. https://doi.org/10.1038/s41580-019-0123-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan XY, Zhong XR, Yu SH, Zhang LC, Liu YN, Zhang Y, Sun LK, Su J. p62 aggregates mediated caspase 8 activation is responsible for progression of ovarian cancer. J Cell Mol Med. 2019;23(6):4030–42. https://doi.org/10.1111/jcmm.14288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu X, Mi X, Wang Z, Zhang M, Hou J, Jiang S, Wang Y, Chen C, Li W. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-2597-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Bba-Rev Cancer. 2020;1873:188314.

    CAS  Google Scholar 

  19. Sun Y, Yao X, Zhang Q-J, Zhu M, Liu Z-P, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, Levine B, Hill JA, Wolf SE, Minei JP, Zang QS. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation. 2018;138(20):2247–62. https://doi.org/10.1161/circulationaha.117.032821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Swiader A, Nahapetyan H, Faccini J, D’Angelo R, Mucher E, Elbaz M, Boya P, Vindis C. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7(20):28821–35. https://doi.org/10.18632/oncotarget.8936.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MMK. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser(65). Biochem J. 2014;460:127–39.

    Article  CAS  Google Scholar 

  22. Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu KY, Nukina N, Hattori N, Imai Y. Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes parkin mitochondrial tethering. Plos Genet. 2014. https://doi.org/10.1371/journal.pgen.1004861.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510(7503):162.

    Article  CAS  Google Scholar 

  24. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21(1):92–101. https://doi.org/10.1016/j.devcel.2011.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lynes EM, Bui M, Yap MC, Benson MD, Schneider B, Ellgaard L, Berthiaume LG, Simmen T. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J. 2012;31(2):457–70.

    Article  CAS  Google Scholar 

  26. Sebti S, Prebois C, Perez-Gracia E, Bauvy C, Desmots F, Pirot N, Gongora C, Bach AS, Hubberstey AV, Palissot V, Berchem G, Codogno P, Linares LK, Liaudet-Coopman E, Pattingre S. BAG6/BAT3 modulates autophagy by affecting EP300/p300 intracellular localization. Autophagy. 2014;10(7):1341–2. https://doi.org/10.4161/auto.28979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alakhova DY, Rapoport NY, Batrakova EV, Timoshin AA, Li S, Nicholls D, Alakhov VY, Kabanov AV. Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release. 2010;142(1):89–100. https://doi.org/10.1016/j.jconrel.2009.09.026.

    Article  CAS  PubMed  Google Scholar 

  28. Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol. 2020;60:72–95. https://doi.org/10.1016/j.semcancer.2019.08.006.

    Article  CAS  PubMed  Google Scholar 

  29. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157. https://doi.org/10.1186/s12943-019-1089-9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang ML, Li HR, Li YR, Ruan Y, Quan CS. Identification of genes and pathways associated with MDR in MCF-7/MDR breast cancer cells by RNA-seq analysis. Mol Med Rep. 2018;17(5):6211–26. https://doi.org/10.3892/mmr.2018.8704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donmez Y, Gunduz U. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed Pharmacother. 2011;65(2):85–9. https://doi.org/10.1016/j.biopha.2010.12.007.

    Article  CAS  PubMed  Google Scholar 

  32. Clay AT, Lu PH, Sharom FJ. Interaction of the P-glycoprotein multidrug transporter with sterols. Biochemistry. 2015;54(43):6586–97. https://doi.org/10.1021/acs.biochem.5b00904.

    Article  CAS  PubMed  Google Scholar 

  33. Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol. 2016;36(4):716–26. https://doi.org/10.3109/07388551.2015.1015957.

    Article  CAS  PubMed  Google Scholar 

  34. Reed JC. Bcl-2 on the brink of breakthroughs in cancer treatment. Cell Death Differ. 2018;25(1):3–6. https://doi.org/10.1038/cdd.2017.188.

    Article  CAS  PubMed  Google Scholar 

  35. McNicholas K, MacGregor MN, Gleadle JM. In order for the light to shine so brightly, the darkness must be present-why do cancers fluoresce with 5-aminolaevulinic acid? Br J Cancer. 2019;121(8):631–9. https://doi.org/10.1038/s41416-019-0516-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ko SH, Gonzalez G, Liu Z, Chen L. Axon injury-induced autophagy activation is impaired in a C. elegans model of tauopathy. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21228559.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liang B, Liu X, Liu Y, Kong D, Liu X, Zhong R, Ma S. Inhibition of autophagy sensitizes MDR-phenotype ovarian cancer SKVCR cells to chemotherapy. Biomed Pharmacother. 2016;82:98–105. https://doi.org/10.1016/j.biopha.2016.04.054.

    Article  CAS  PubMed  Google Scholar 

  38. Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157(1):65–75. https://doi.org/10.1016/j.cell.2014.02.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levy JMM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 2020;27(3):843–57. https://doi.org/10.1038/s41418-019-0474.

    Article  Google Scholar 

  40. Huang Q, Liu Y, Zhang S, Yap YT, Li W, Zhang D, Gardner A, Zhang L, Song S, Hess RA, Zhang Z. Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice. Autophagy. 2020. https://doi.org/10.1080/15548627.2020.1783822.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kapadia M, De Snoo ML, Kalia LV, Kalia SK. Regulation of Parkin-dependent mitophagy by Bcl-2-associated athanogene (BAG) family members. Neural Regen Res. 2021;16(4):684–5. https://doi.org/10.4103/1673-5374.295330.

    Article  PubMed  Google Scholar 

  42. Aveic S, Tonini GP. Resistance to receptor tyrosine kinase inhibitors in solid tumors: can we improve the cancer fighting strategy by blocking autophagy? Cancer Cell Int. 2016;16:62. https://doi.org/10.1186/s12935-016-0341-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rorke S, Murphy S, Khalifa M, Chernenko G, Tang SC. Prognostic significance of BAG-1 expression in nonsmall cell lung cancer. Int J Cancer. 2001;95(5):317–22. https://doi.org/10.1002/1097-0215(20010920)95:5%3c317::aid-ijc1055%3e3.0.co;2-j.

    Article  CAS  PubMed  Google Scholar 

  44. Giridhar KV, Sosa CP, Hillman DW, Sanhueza C, Dalpiaz CL, Costello BA, Quevedo FJ, Pitot HC, Dronca RS, Ertz D, Cheville JC, Donkena KV, Kohli M. Whole blood mRNA expression-based prognosis of metastatic renal cell carcinoma. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18112326.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang B, Zhou H, Lang X, Liu Z, Xiong F, Wang S. Expression of BAG-1 is closely related to cell differentiation and TNM stage in esophageal cancer and its downregulation inhibits the proliferation and invasion of human esophageal carcinoma cells. Oncol Rep. 2014;32(4):1441–6. https://doi.org/10.3892/or.2014.3356.

    Article  CAS  PubMed  Google Scholar 

  46. Kilbas PO, Akcay IM, Doganay GD, Arisan ED. Bag-1 silencing enhanced chemotherapeutic drug-induced apoptosis in MCF-7 breast cancer cells affecting PI3K/Akt/mTOR and MAPK signaling pathways. Mol Biol Rep. 2019;46(1):847–60. https://doi.org/10.1007/s11033-018-4540-x.

    Article  CAS  PubMed  Google Scholar 

  47. Papadakis E, Robson N, Yeomans A, Bailey S, Laversin S, Beers S, Sayan AE, Ashton-Key M, Schwaiger S, Stuppner H, Troppmair J, Packham G, Cutress R. A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells. Oncotarget. 2016;7(14):18851–64. https://doi.org/10.18632/oncotarget.7944.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu S, Ren B, Gao H, Liao S, Zhai YX, Li S, Su XJ, Jin P, Stroncek D, Xu Z, Zeng Q, Li Y. Over-expression of BAG-1 in head and neck squamous cell carcinomas (HNSCC) is associated with cisplatin-resistance. J Transl Med. 2017;15(1):189. https://doi.org/10.1186/s12967-017-1289-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collard TJ, Urban BC, Patsos HA, Hague A, Townsend PA, Paraskeva C, Williams AC. The retinoblastoma protein (Rb) as an anti-apoptotic factor: expression of Rb is required for the anti-apoptotic function of BAG-1 protein in colorectal tumour cells. Cell Death Dis. 2012;3: e408. https://doi.org/10.1038/cddis.2012.142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshino K, Motoyama S, Koyota S, Shibuya K, Usami S, Maruyama K, Saito H, Minamiya Y, Sugiyama T, Ogawa J. IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous esophageal cancer cells. Biochem Biophys Res Commun. 2011;404(4):1070–5. https://doi.org/10.1016/j.bbrc.2010.12.115.

    Article  CAS  PubMed  Google Scholar 

  51. Ke DS, Ji LM, Wang Y, Fu XM, Chen JY, Wang F, Zhao DB, Xue Y, Lan XH, Hou JM. JNK1 regulates RANKL-induced osteoclastogenesis via activation of a novel Bcl-2-beclin1-autophagy pathway. FASEB J. 2019;33(10):11082–95. https://doi.org/10.1096/fj.201802597RR.

    Article  CAS  PubMed  Google Scholar 

  52. Turk M, Tatli O, Alkan HF, Ozfiliz Kilbas P, Alkurt G, Dinler Doganay G. Co-chaperone bag-1 plays a role in the autophagy-dependent cell survival through beclin 1 interaction. Molecules. 2021. https://doi.org/10.3390/molecules26040854.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sun J, Pan LM, Chen LB, Wang Y. LncRNA XIST promotes human lung adenocarcinoma cells to cisplatin resistance via let-7i/BAG-1 axis. Cell Cycle. 2017;16(21):2100–7. https://doi.org/10.1080/15384101.2017.1361071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Millar EK, Anderson LR, McNeil CM, O’Toole SA, Pinese M, Crea P, Morey AL, Biankin AV, Henshall SM, Musgrove EA, Sutherland RL, Butt AJ. BAG-1 predicts patient outcome and tamoxifen responsiveness in ER-positive invasive ductal carcinoma of the breast. Br J Cancer. 2009;100(1):123–33. https://doi.org/10.1038/sj.bjc.6604809.

    Article  CAS  PubMed  Google Scholar 

  55. Mariotto E, Viola G, Zanon C, Aveic S. A BAG’s life: every connection matters in cancer. Pharmacol Ther. 2020;209: 107498. https://doi.org/10.1016/j.pharmthera.2020.107498.

    Article  CAS  PubMed  Google Scholar 

  56. Staibano S, Mascolo M, Di Benedetto M, Vecchione ML, Ilardi G, Di Lorenzo G, Autorino R, Salerno V, Morena A, Rocco A, Turco MC, Morelli E. BAG3 protein delocalisation in prostate carcinoma. Tumour Biol. 2010;31(5):461–9. https://doi.org/10.1007/s13277-010-0055-3.

    Article  CAS  PubMed  Google Scholar 

  57. Romano MF, Festa M, Petrella A, Rosati A, Pascale M, Bisogni R, Poggi V, Kohn EC, Venuta S, Turco MC, Leone A. BAG3 protein regulates cell survival in childhood acute lymphoblastic leukemia cells. Cancer Biol Ther. 2003;2(5):508–10. https://doi.org/10.4161/cbt.2.5.524.

    Article  CAS  PubMed  Google Scholar 

  58. Chiappetta G, Basile A, Barbieri A, Falco A, Rosati A, Festa M, Pasquinelli R, Califano D, Palma G, Costanzo R, Barcaroli D, Capunzo M, Franco R, Rocco G, Pascale M, Turco MC, De Laurenzi V, Arra C. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth. Oncotarget. 2014;5(16):6846–53. https://doi.org/10.18632/oncotarget.2261.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Guerriero L, Palmieri G, De Marco M, Cossu A, Remondelli P, Capunzo M, Turco MC, Rosati A. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells. Oncotarget. 2017;8(46):80393–404. https://doi.org/10.18632/oncotarget.18902.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sturner E, Behl C. The role of the multifunctional BAG3 protein in cellular protein quality control and in disease. Front Mol Neurosci. 2017;10:177. https://doi.org/10.3389/fnmol.2017.00177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Felzen V, Hiebel C, Koziollek-Drechsler I, Reissig S, Wolfrum U, Kogel D, Brandts C, Behl C, Morawe T. Estrogen receptor alpha regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis. 2015;6: e1812. https://doi.org/10.1038/cddis.2015.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu BQ, Du ZX, Zong ZH, Li C, Li N, Zhang Q, Kong DH, Wang HQ. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells. Autophagy. 2013;9(6):905–16. https://doi.org/10.4161/auto.24292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rapino F, Jung M, Fulda S. BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene. 2014;33(13):1713–24. https://doi.org/10.1038/onc.2013.110.

    Article  CAS  PubMed  Google Scholar 

  64. Guilbert SM, Lambert H, Rodrigue MA, Fuchs M, Landry J, Lavoie JN. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency. FASEB J. 2018;32(7):3518–35. https://doi.org/10.1096/fj.201700558RR.

    Article  CAS  PubMed  Google Scholar 

  65. Tahrir FG, Knezevic T, Gupta MK, Gordon J, Cheung JY, Feldman AM, Khalili K. Evidence for the role of BAG3 in mitochondrial quality control in cardiomyocytes. J Cell Physiol. 2017;232(4):797–805. https://doi.org/10.1002/jcp.25476.

    Article  CAS  PubMed  Google Scholar 

  66. Carroll RG, Hollville E, Martin SJ. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 2014;9(4):1538–53. https://doi.org/10.1016/j.celrep.2014.10.046.

    Article  CAS  PubMed  Google Scholar 

  67. Wang JM, Gao Q, Zhang Q, Hao L, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. Implication of BAG5 downregulation in metabolic reprogramming of cisplatin-resistant ovarian cancer cells via mTORC2 signaling pathway. Biochim Biophys Acta Mol Cell Res. 2021;1868: 119076. https://doi.org/10.1016/j.bbamcr.2021.119076.

    Article  CAS  PubMed  Google Scholar 

  68. Che N, Ng KY, Wong TL, Tong M, Kau PW, Chan LH, Lee TK, Huen MS, Yun JP, Ma S. PRMT6 deficiency induces autophagy in hostile microenvironments of hepatocellular carcinoma tumors by regulating BAG5-associated HSC70 stability. Cancer Lett. 2021;501:247–62. https://doi.org/10.1016/j.canlet.2020.11.002.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang DL, Wang JM, Wu T, Du X, Yan J, Du ZX, Wang HQ. BAG5 promotes invasion of papillary thyroid cancer cells via upregulation of fibronectin 1 at the translational level. Biochim Biophys Acta Mol Cell Res. 2020;1867: 118715. https://doi.org/10.1016/j.bbamcr.2020.118715.

    Article  CAS  PubMed  Google Scholar 

  70. Bruchmann A, Roller C, Walther TV, Schafer G, Lehmusvaara S, Visakorpi T, Klocker H, Cato AC, Maddalo D. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis. BMC Cancer. 2013;13:96. https://doi.org/10.1186/1471-2407-13-96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang X, Guo J, Fei E, Mu Y, He S, Che X, Tan J, Xia K, Zhang Z, Wang G, Tang B. BAG5 protects against mitochondrial oxidative damage through regulating PINK1 degradation. PLoS ONE. 2014;9(1): e86276. https://doi.org/10.1371/journal.pone.0086276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kalia SK, Lee S, Smith PD, Liu L, Crocker SJ, Thorarinsdottir TE, Glover JR, Fon EA, Park DS, Lozano AM. BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron. 2004;44(6):931–45. https://doi.org/10.1016/j.neuron.2004.11.026.

    Article  CAS  PubMed  Google Scholar 

  73. Tan VP, Smith JM, Tu M, Yu JD, Ding EY, Miyamoto S. Dissociation of mitochondrial HK-II elicits mitophagy and confers cardioprotection against ischemia. Cell Death Dis. 2019;10(10):730. https://doi.org/10.1038/s41419-019-1965-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Snoo ML, Friesen EL, Zhang YT, Earnshaw R, Dorval G, Kapadia M, O’Hara DM, Agapova V, Chau H, Pellerito O, Tang MY, Wang X, Schmitt-Ulms G, Durcan TM, Fon EA, Kalia LV, Kalia SK. Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-dependent mitophagy and cell death. Cell Death Dis. 2019;10(12):907. https://doi.org/10.1038/s41419-019-2132-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rodrigo-Brenni MC, Gutierrez E, Hegde RS. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol Cell. 2014;55(2):227–37. https://doi.org/10.1016/j.molcel.2014.05.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hayashishita M, Kawahara H, Yokota N. BAG6 deficiency induces mis-distribution of mitochondrial clusters under depolarization. FEBS Open Bio. 2019;9(7):1281–91. https://doi.org/10.1002/2211-5463.12677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chu Y, Dong X, Kang Y, Liu J, Zhang T, Yang C, Wang Z, Shen W, Huo H, Zhuang M, Lu J, Liu Y. The chaperone BAG6 regulates cellular homeostasis between autophagy and apoptosis by holding LC3B. iScience. 2020;23(11):101708. https://doi.org/10.1016/j.isci.2020.101708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ragimbeau R, El Kebriti L, Sebti S, Fourgous E, Boulahtouf A, Arena G, Espert L, Turtoi A, Gongora C, Houede N, Pattingre S. BAG6 promotes PINK1 signaling pathway and is essential for mitophagy. FASEB J. 2021;35(2): e21361. https://doi.org/10.1096/fj.202000930R.

    Article  CAS  PubMed  Google Scholar 

  79. Saita S, Ishihara T, Maeda M, Iemura S, Natsume T, Mihara K, Ishihara N. Distinct types of protease systems are involved in homeostasis regulation of mitochondrial morphology via balanced fusion and fission. Genes Cells. 2016;21(5):408–24. https://doi.org/10.1111/gtc.12351.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the people in the lab for critical discussion, and we thank them for the funding for this study.

Funding

This work was funded by the Project of Maternal and Child Health Center of China Center for Disease Control and Prevention, grant number 2020FYH019, and the Project of Chengdu Municipal Health Commission, Grant number 2020211.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: CL and XD; writing: JG; revision of the manuscript: CL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaolin Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Consent for publication

All authors agreed to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Du, X. & Li, C. BAG family proteins contributes to autophagy-mediated multidrug resistance of tumor. Clin Transl Oncol 24, 1492–1500 (2022). https://doi.org/10.1007/s12094-022-02819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02819-6

Keywords

Navigation