Skip to main content

Advertisement

Log in

CD105: tumor diagnosis, prognostic marker and future tumor therapeutic target

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer is one of the diseases with the highest morbidity and mortality rates worldwide, and its therapeutic options are inadequate. The endothelial glycoprotein, also known as CD105, is a type I transmembrane glycoprotein located on the surface of the cell membranes and it is one of the transforming growth factor-β (TGF-β) receptor complexes. It regulates the responses associated with binding to transforming growth factor β1 egg (Activin-A), bone morphogenetic protein 2 (BMP-2), and bone morphogenetic protein 7 (BMP-7). Additionally, it is involved in the regulation of angiogenesis. This glycoprotein is indispensable in the treatment of tumor angiogenesis, and it also plays a leading role in tumor angiogenesis therapy. Therefore, CD105 is considered to be a novel therapeutic target. In this study, we explored the significance of CD105 in the diagnosis, treatment and prognosis of various tumors, and provided evidence for the effect and mechanism of CD105 on tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ollauri-Ibanez C, Ayuso-Inigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel). 2021;13(7):1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  3. Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85.

    Article  PubMed  Google Scholar 

  4. Kuczynski EA, Vermeulen PB, Pezzella F, et al. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16(8):469–93.

    Article  CAS  PubMed  Google Scholar 

  5. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.

    Article  PubMed  CAS  Google Scholar 

  6. de Almeida PE, Mak J, Hernandez G, et al. Anti-VEGF treatment enhances CD8(+) T-cell antitumor activity by amplifying hypoxia. Cancer Immunol Res. 2020;8(6):806–18.

    Article  PubMed  Google Scholar 

  7. Zhuo H, Lyu Z, Su J, et al. Effect of lung squamous cell carcinoma tumor microenvironment on the CD105+ endothelial cell proteome. J Proteome Res. 2014;13(11):4717–29.

    Article  CAS  PubMed  Google Scholar 

  8. Wood LM, Pan Z-K, Guirnalda P, et al. Targeting tumor vasculature with novel Listeria-based vaccines directed against CD105. Cancer Immunol Immunother. 2011;60(7):931–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin W, Zhao Y, Zhong L. Current strategies of virotherapy in clinical trials for cancer treatment. J Med Virol. 2021;93(8):4668–92.

    Article  CAS  PubMed  Google Scholar 

  10. Cheifetz S, Bellón T, Calés C, et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992;267(27):19027–30.

    Article  CAS  PubMed  Google Scholar 

  11. Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem. 1999;274(2):584–94.

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Zhai Z, Liu D, et al. CD105 promotes hepatocarcinoma cell invasion and metastasis through VEGF. Tumour Biol. 2015;36(2):737–45.

    Article  CAS  PubMed  Google Scholar 

  13. Seon BK, Haba A, Matsuno F, et al. Endoglin-targeted cancer therapy. Curr Drug Deliv. 2011;8(1):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paauwe M, ten Dijke P, Hawinkels LJAC. Endoglin for tumor imaging and targeted cancer therapy. Expert Opin Ther Targets. 2013;17(4):421–35.

    Article  CAS  PubMed  Google Scholar 

  15. ten Dijke P, Goumans M-J, Pardali E. Endoglin in angiogenesis and vascular diseases. Angiogenesis. 2008;11(1):79–89.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar P, Wang JM, Bernabeu C. CD 105 and angiogenesis. J Pathol. 1996;178(4):363–6.

    Article  CAS  PubMed  Google Scholar 

  17. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  18. Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang K, Na T, Ge F, et al. DLC-1 tumor suppressor regulates CD105 expression on human non-small cell lung carcinoma cells through inhibiting TGF-β1 signaling. Exp Cell Res. 2020;386(2):111732.

    Article  CAS  PubMed  Google Scholar 

  20. Tansi FL, Rüger R, Kollmeier AM, et al. Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes. Biochim Biophys Acta Gen Subj. 2018;1862(6):1389–400.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong L, Shi W, Gan L, et al. Human endoglin-CD3 bispecific T cell engager antibody induces anti-tumor effect. Theranostics. 2021;11(13):6393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu TT, Wang J, Cui PF, et al. Circulating endothelial microparticles for prediction of therapeutic effect in advanced lung cancer. Zhonghua Zhong Liu Za Zhi. 2020;42(9):723–8.

    CAS  PubMed  Google Scholar 

  23. Takase Y, Kai K, Masuda M, et al. Endoglin (CD105) expression and angiogenesis status in small cell lung cancer. Pathol Res Pract. 2010;206(11):725–30.

    Article  CAS  PubMed  Google Scholar 

  24. Listik E, Horst B, Choi AS, et al. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS ONE. 2021;16(4):e0249558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di X, Jin X, Li R, et al. CircRNAs and lung cancer: biomarkers and master regulators. Life Sci. 2019;1(220):177–85.

    Article  CAS  Google Scholar 

  26. DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–51.

    Article  PubMed  Google Scholar 

  27. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134–50.

    Article  PubMed  Google Scholar 

  28. Zhang S, Gong M, Zhang D, et al. Thiol-PEG-carboxyl-stabilized Fe2O3/Au nanoparticles targeted to CD105: synthesis, characterization and application in MR imaging of tumor angiogenesis. Eur J Radiol. 2014;83(7):1190–8.

    Article  PubMed  Google Scholar 

  29. Hong H, Wang F, Zhang Y, et al. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces. 2015;7(5):3373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo J, Hong H, Chen G, et al. Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. ACS Appl Mater Interfaces. 2014;6(24):21769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhuo H, Zheng B, Liu J, et al. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes. J Exp Clin Cancer Res CR. 2018;37(1):42.

    Article  PubMed  CAS  Google Scholar 

  32. Toi H, Tsujie M, Haruta Y, et al. Facilitation of endoglin-targeting cancer therapy by development/utilization of a novel genetically engineered mouse model expressing humanized endoglin (CD105). Int J Cancer. 2015;136(2):452–61.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Gu H, Xu Y, et al. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles. Theranostics. 2015;5(4):399–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goel S, Chen F, Luan S, et al. Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies. Adv Sci (Weinh). 2016;3(11):1600122.

    Article  CAS  Google Scholar 

  35. Martinez LM, Labovsky V, Calcagno MdL, et al. Comparative prognostic relevance of breast intra-tumoral microvessel density evaluated by CD105 and CD146: a pilot study of 42 cases. Pathol Res Pract. 2016;212(4):350–5.

    Article  CAS  PubMed  Google Scholar 

  36. Martinez LM, Labovsky V, Calcagno MdL, et al. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE. 2015;10(3):e0121421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang X, Liu Y, Zhou K, et al. Isolation and characterization of CD105+/CD90+ subpopulation in breast cancer MDA-MB-231 cell line. Int J Clin Exp Pathol. 2015;8(5):5105–12.

    PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Li C, Li Y, et al. Involvement of breast cancer stem cells in tumor angiogenesis. Oncol Lett. 2017;14(6):8150–5.

    PubMed  PubMed Central  Google Scholar 

  39. Litwin MS, Tan H-J. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317(24):2532–42.

    Article  PubMed  Google Scholar 

  40. Wei W, Rosenkrans ZT, Liu J, et al. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120(8):3787–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Costello AJ. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat Rev Urol. 2020;17(3):177–88.

    Article  PubMed  Google Scholar 

  42. Fujita K, Ewing CM, Chan DYS, et al. Endoglin (CD105) as a urinary and serum marker of prostate cancer. Int J Cancer. 2009;124(3):664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madhav A, Andres A, Duong F, et al. Antagonizing CD105 enhances radiation sensitivity in prostate cancer. Oncogene. 2018;37(32):4385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyata Y, Mitsunari K, Asai A, et al. Pathological significance and prognostic role of microvessel density, evaluated using CD31, CD34, and CD105 in prostate cancer patients after radical prostatectomy with neoadjuvant therapy. Prostate. 2015;75(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  45. Miyata Y, Sakai H. Reconsideration of the clinical and histopathological significance of angiogenesis in prostate cancer: Usefulness and limitations of microvessel density measurement. Int J Urol. 2015;22(9):806–15.

    Article  CAS  PubMed  Google Scholar 

  46. Svatek RS, Karam JA, Roehrborn CG, et al. Preoperative plasma endoglin levels predict biochemical progression after radical prostatectomy. Clin Cancer Res. 2008;14(11):3362–6.

    Article  CAS  PubMed  Google Scholar 

  47. Karzai FH, Apolo AB, Cao L, et al. A phase I study of TRC105 anti-endoglin (CD105) antibody in metastatic castration-resistant prostate cancer. BJU Int. 2015;116(4):546–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Placencio-Hickok VR, Madhav A, Kim S, et al. Soluble CD105 is prognostic of disease recurrence in prostate cancer patients. Endocr Relat Cancer. 2020;27(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vidal AC, Duong F, Howard LE, et al. Soluble endoglin (sCD105) as a novel biomarker for detecting aggressive prostate cancer. Anticancer Res. 2020;40(3):1459–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kato M, Placencio-Hickok VR, Madhav A, et al. Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene. 2019;38(5):716–30.

    Article  CAS  PubMed  Google Scholar 

  51. Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release. 2020;10(325):249–75.

    Article  CAS  Google Scholar 

  52. Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet. 2019;394(10207):1467–80.

    Article  PubMed  Google Scholar 

  53. Franke AJ, Skelton WP, Starr JS, et al. Immunotherapy for colorectal cancer: a review of current and novel therapeutic approaches. J Natl Cancer Inst. 2019;111(11):1131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ladabaum U, Dominitz JA, Kahi C, et al. Strategies for colorectal cancer screening. Gastroenterology. 2020;158(2):418–32.

    Article  CAS  PubMed  Google Scholar 

  55. Deliu IC, Neagoe CD, Beznă M, et al. Correlations between endothelial cell markers CD31, CD34 and CD105 in colorectal carcinoma. Rom J Morphol Embryol. 2016;57(3):1025–30.

    PubMed  Google Scholar 

  56. Mohamed SY, Mohammed HL, Ibrahim HM, et al. Role of VEGF, CD105, and CD31 in the prognosis of colorectal cancer cases. J Gastrointest Cancer. 2019;50(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  57. Nogués A, Gallardo-Vara E, Zafra MP, et al. Endoglin (CD105) and VEGF as potential angiogenic and dissemination markers for colorectal cancer. World J Surg Oncol. 2020;18(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cho T, Shiozawa E, Urushibara F, et al. The role of microvessel density, lymph node metastasis, and tumor size as prognostic factors of distant metastasis in colorectal cancer. Oncol Lett. 2017;13(6):4327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ciocâlteu A, Pirici D, Stefanescu A, et al. Endomicroscopy with fluorescent CD105 antibodies for “In Vivo” imaging of colorectal cancer angiogenesis. Curr Health Sci J. 2015;41(3):288–92.

    PubMed  PubMed Central  Google Scholar 

  60. Fattahi F, Saeednejad Zanjani L, Vafaei S, et al. Expressions of TWIST1 and CD105 markers in colorectal cancer patients and their association with metastatic potential and prognosis. Diagn Pathol. 2021;16(1):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

    Article  PubMed  Google Scholar 

  63. Yao Y, Pan Y, Chen J, et al. Endoglin (CD105) expression in angiogenesis of primary hepatocellular carcinomas: analysis using tissue microarrays and comparisons with CD34 and VEGF. Ann Clin Lab Sci. 2007;37(1):39–48.

    CAS  PubMed  Google Scholar 

  64. Yang LY, Lu WQ, Huang GW, et al. Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer. 2006;6:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chen J, Zaidi S, Rao S, et al. Analysis of genomes and transcriptomes of hepatocellular carcinomas identifies mutations and gene expression changes in the transforming growth factor-β pathway. Gastroenterology. 2018;154(1):195–210.

    Article  CAS  PubMed  Google Scholar 

  66. Fonsatti E, Del Vecchio L, Altomonte M, et al. Endoglin: An accessory component of the TGF-beta-binding receptor-complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. J Cell Physiol. 2001;188(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  67. Duff SE, Li C, Garland JM, et al. CD105 is important for angiogenesis: evidence and potential applications. FASEB J. 2003;17(9):984–92.

    Article  CAS  PubMed  Google Scholar 

  68. Balzarini P, Benetti A, Invernici G, et al. Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Lab Invest. 2012;92(9):1297–309.

    Article  CAS  PubMed  Google Scholar 

  69. Yu D, Zhuang L, Sun X, et al. Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma. BMC Cancer. 2007;7:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Alsamman M, Sterzer V, Meurer SK, et al. Endoglin in human liver disease and murine models of liver fibrosis—a protective factor against liver fibrosis. Liver Int. 2018;38(5):858–67.

    Article  CAS  PubMed  Google Scholar 

  71. Yan H, Gao X, Zhang Y, et al. Imaging tiny hepatic tumor xenografts via endoglin-targeted paramagnetic/optical nanoprobe. ACS Appl Mater Interfaces. 2018;10(20):17047–57.

    Article  CAS  PubMed  Google Scholar 

  72. Zhong L, Zou H, Huang Y, et al. Magnetic endoglin aptamer nanoprobe for targeted diagnosis of solid tumor. J Biomed Nanotechnol. 2019;15(2):352–62.

    Article  CAS  PubMed  Google Scholar 

  73. Qian H, Yang L, Zhao W, et al. A comparison of CD105 and CD31 expression in tumor vessels of hepatocellular carcinoma by tissue microarray and flow cytometry. Exp Ther Med. 2018;16(4):2881–8.

    PubMed  PubMed Central  Google Scholar 

  74. Paschoal JP, Bernardo V, Canedo NHS, et al. Microvascular density of regenerative nodule to small hepatocellular carcinoma by automated analysis using CD105 and CD34 immunoexpression. BMC Cancer. 2014;14:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Xue C, Shao S, Yan Y, et al. Association between G-protein coupled receptor 4 expression and microvessel density, clinicopathological characteristics and survival in hepatocellular carcinoma. Oncol Lett. 2020;19(4):2609–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Segatelli V, de Oliveira EC, Boin IFSF, et al. Evaluation and comparison of microvessel density using the markers CD34 and CD105 in regenerative nodules, dysplastic nodules and hepatocellular carcinoma. Hepatol Int. 2014;8(2):260–5.

    PubMed  Google Scholar 

  77. Benetti A, Berenzi A, Gambarotti M, et al. Transforming growth factor-beta1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium. Cancer Res. 2008;68(20):8626–34.

    Article  CAS  PubMed  Google Scholar 

  78. Wang Z-S, Wu L-Q, Yi X, et al. Connexin-43 can delay early recurrence and metastasis in patients with hepatitis B-related hepatocellular carcinoma and low serum alpha-fetoprotein after radical hepatectomy. BMC Cancer. 2013;13:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cimpean AM, Saptefrati L, Ceausu R, et al. Characterization of endoglin and Ki-67 expression in endothelial cells from benign and malignant lesions of the uterine cervix. Pathol Int. 2009;59(10):695–700.

    Article  CAS  PubMed  Google Scholar 

  80. Meurer SK, Alsamman M, Scholten D, et al. Endoglin in liver fibrogenesis: bridging basic science and clinical practice. World J Biol Chem. 2014;5(2):180–203.

    PubMed  PubMed Central  Google Scholar 

  81. Kwon Y-C, Sasaki R, Meyer K, et al. Hepatitis C virus core protein modulates endoglin (CD105) signaling pathway for liver pathogenesis. J Virol. 2017;91(21).

  82. Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15(2):95.

    Article  CAS  PubMed  Google Scholar 

  83. Macias RIR, Kornek M, Rodrigues PM, et al. Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int. 2019;39(Suppl 1):108–22.

    Article  PubMed  Google Scholar 

  84. Nair A, Ingram N, Verghese ET, et al. CD105 is a prognostic marker and valid endothelial target for microbubble platforms in cholangiocarcinoma. Cell Oncol (Dordr). 2020;43(5):835–45.

    Article  CAS  Google Scholar 

  85. Duffy AG, Ma C, Ulahannan SV, et al. Phase I and preliminary phase II study of TRC105 in combination with sorafenib in hepatocellular carcinoma. Clin Cancer Res. 2017;23(16):4633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tampaki M, Papatheodoridis GV, Cholongitas E. Intrahepatic recurrence of hepatocellular carcinoma after resection: an update. Clin J Gastroenterol. 2021;14(3):699–713.

    Article  PubMed  Google Scholar 

  87. Zhang Q, Wu J, Bai X, et al. Evaluation of intra-tumoral vascularization in hepatocellular carcinomas. Front Med (Lausanne). 2020;27(7):584250.

    Article  Google Scholar 

  88. Yang L-y, Lu W-q, Huang G-w, et al. Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer. 2006;6:110. https://doi.org/10.1186/1471-2407-6-110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sui G, Luo Q, Du J, et al. Clinical application of ultrasound-guided percutaneous microwave ablation in the treatment of T1aN0M0 stage renal carcinoma. J Med Ultrason (2001). 2019;46(2):217–22.

    Article  Google Scholar 

  90. Owens B. Kidney cancer. Nature. 2016;537(7620):S97.

    Article  CAS  PubMed  Google Scholar 

  91. Santoni M, Piva F, Porta C, et al. Artificial Neural Networks as a Way to Predict Future Kidney Cancer Incidence in the United States. Clin Genitourin Cancer. 2021;19(2):e84–91.

    Article  PubMed  Google Scholar 

  92. Ball MW, Srinivasan R. Kidney cancer in 2017: challenging and refining treatment paradigms. Nat Rev Urol. 2018;15(2):77–8.

    Article  PubMed  Google Scholar 

  93. Rosa R, Damiano V, Nappi L, et al. Angiogenic and signalling proteins correlate with sensitivity to sequential treatment in renal cell cancer. Br J Cancer. 2013;109(3):686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu J, Guan W, Liu P, et al. Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Rep. 2017;9(2):464–77.

    Article  CAS  Google Scholar 

  95. Hu J, Guan W, Yan L, et al. Cancer Stem Cell Marker Endoglin (CD105) Induces epithelial mesenchymal transition (EMT) but not metastasis in clear cell renal cell carcinoma. Stem Cells Int. 2019; p. 9060152.

  96. Zhang X-F, Weng D-S, Pan K, et al. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells. Mol Carcinog. 2017;56(11):2499–511.

    Article  CAS  PubMed  Google Scholar 

  97. Dorff TB, Longmate JA, Pal SK, et al. Bevacizumab alone or in combination with TRC105 for patients with refractory metastatic renal cell cancer. Cancer. 2017;123(23):4566–73.

    Article  CAS  PubMed  Google Scholar 

  98. Choueiri TK, Michaelson MD, Posadas EM, et al. An open label phase Ib dose escalation study of TRC105 (Anti-Endoglin Antibody) with axitinib in patients with metastatic renal cell carcinoma. Oncologist. 2019;24(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  99. Fiedorowicz M, Khan MI, Strzemecki D, et al. Renal carcinoma CD105-/CD44- cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep. 2020;10(1):5379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Saeednejad Zanjani L, Madjd Z, Abolhasani M, et al. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma. Cancer Biomark. 2018;21(4):821–37.

    Article  CAS  PubMed  Google Scholar 

  101. Cioca A, Muntean D, Bungardean C. CD105 as a tool for assessing microvessel density in renal cell carcinoma. Indian J Pathol Microbiol. 2019;62(2):239–43.

    Article  PubMed  Google Scholar 

  102. Saroufim A, Messai Y, Hasmim M, et al. Tumoral CD105 is a novel independent prognostic marker for prognosis in clear-cell renal cell carcinoma. Br J Cancer. 2014;110(7):1778–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moore A, Donahue T. Pancreatic cancer. JAMA. 2019;322(14):1426.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Neoptolemos JP, Kleeff J, Michl P, et al. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15(6):333–48.

    Article  PubMed  Google Scholar 

  105. Kokaji E, Shimomura A, Minamisaka T, et al. Endoglin (CD105) and SMAD4 regulate spheroid formation and the suppression of the invasive ability of human pancreatic cancer cells. Int J Oncol. 2018;52(3):892–900.

    PubMed  Google Scholar 

  106. Lund K, Olsen CE, Wong JJW, et al. 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin. J Exp Clin Cancer Res CR. 2017;36(1):187.

    Article  PubMed  CAS  Google Scholar 

  107. Luo H, England CG, Shi S, et al. Dual targeting of tissue factor and CD105 for preclinical PET imaging of pancreatic cancer. Clin Cancer Res. 2016;22(15):3821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhou L, Yu L, Ding G, et al. Overexpressions of DLL4 and CD105 are associated with poor prognosis of patients with pancreatic ductal adenocarcinoma. Pathol Oncol Res. 2015;21(4):1141–7.

    Article  CAS  PubMed  Google Scholar 

  109. Huang Y-K, Liu H, Wang X-Z, et al. Annexin A2 and CD105 expression in pancreatic ductal adenocarcinoma is associated with tumor recurrence and prognosis. Asian Pac J Cancer Prev. 2014;15(22):9921–6.

    Article  PubMed  Google Scholar 

  110. Lytras D, Leontara V, Kefala M, et al. Microvessel landscape assessment in pancreatic ductal adenocarcinoma: unclear value of targeting endoglin (CD105) as prognostic factor of clinical outcome. Pancreas. 2015;44(1):87–92.

    Article  PubMed  Google Scholar 

  111. Schaefer I-M, Cote GM, Hornick JL. Contemporary sarcoma diagnosis, genetics, and genomics. J Clin Oncol. 2018;36(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  112. Gamboa AC, Gronchi A, Cardona K. Soft-tissue sarcoma in adults: An update on the current state of histiotype-specific management in an era of personalized medicine. CA Cancer J Clin. 2020;70(3):200–29.

    Article  PubMed  Google Scholar 

  113. Hara H. Endoglin (CD105) and claudin-5 expression in cutaneous angiosarcoma. Am J Dermatopathol. 2012;34(7):779–82.

    Article  PubMed  Google Scholar 

  114. Tien P-C, Quan M, Kuang S. Sustained activation of notch signaling maintains tumor-initiating cells in a murine model of liposarcoma. Cancer Lett. 2020;494:27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Infante T, Cesario E, Gallo M, et al. Ex vivo behaviour of human bone tumor endothelial cells. Cancers. 2013;5(2):404–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gorden BH, Kim J-H, Sarver AL, et al. Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization. Am J Pathol. 2014;184(4):985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lin J-J, Huang C-S, Yu J, et al. Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells. Breast Cancer Res. 2014;16(2):R29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Di Paolo V, Russo I, Boldrini R, et al. Evaluation of Endoglin (CD105) expression in pediatric rhabdomyosarcoma. BMC Cancer. 2018;18(1):31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Radzikowska J, Krzeski A, Czarnecka AM, et al. Endoglin expression and microvessel density as prognostic factors in pediatric rhabdomyosarcoma. J Clin Med. 2021;10(3):512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li X, Huang X, Zhang J, et al. A novel peptide targets CD105 for tumour imaging in vivo. Oncol Rep. 2018;40(5):2935–43.

    CAS  PubMed  Google Scholar 

  121. Sakamoto R, Kajihara I, Miyauchi H, et al. Inhibition of endoglin exerts antitumor effects through the regulation of non-smad TGF-β signaling in angiosarcoma. J Invest Dermatol. 2020;140(10):2060.

    Article  CAS  PubMed  Google Scholar 

  122. Puerto-Camacho P, Amaral AT, Lamhamedi-Cherradi S-E, et al. Preclinical efficacy of endoglin-targeting antibody-drug conjugates for the treatment of Ewing sarcoma. Clin Cancer Res. 2019;25(7):2228–40.

    Article  CAS  PubMed  Google Scholar 

  123. Mitsui H, Shibata K, Mano Y, et al. The expression and characterization of endoglin in uterine leiomyosarcoma. Clin Exp Metast. 2013;30(6):731–40.

    Article  CAS  Google Scholar 

  124. Jawhari S, Ratinaud M-H, Verdier M. Glioblastoma, hypoxia and autophagy: a survival-prone “ménage-à-trois.” Cell Death Dis. 2016;7(10):e2434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Clara CA, Marie SKN, de Almeida JRW, et al. Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma. Neuropathology. 2014;34(4):343–52.

    CAS  PubMed  Google Scholar 

  126. Mikkelsen VE, Stensjøen AL, Granli US, et al. Angiogenesis and radiological tumor growth in patients with glioblastoma. BMC Cancer. 2018;18(1):862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Afshar Moghaddam N, Mahsuni P, Taheri D. Evaluation of endoglin as an angiogenesis marker in glioblastoma. Iran J Pathol. 2015;10(2):89–96.

    PubMed  PubMed Central  Google Scholar 

  128. Jia ZZ, Shi W, Shi JL, et al. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature. Eur J Radiol. 2017;87:120–4.

    Article  PubMed  Google Scholar 

  129. Liu C, Yan F, Xu Y, et al. Molecular ultrasound assessment of glioblastoma neovasculature with endoglin-targeted microbubbles. Contrast Media Mol Imaging. 2018;2018:8425495.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sica G, Lama G, Anile C, et al. Assessment of angiogenesis by CD105 and nestin expression in peritumor tissue of glioblastoma. Int J Oncol. 2011;38(1):41–9.

    PubMed  Google Scholar 

  131. Burghardt I, Ventura E, Weiss T, et al. Endoglin and TGF-β signaling in glioblastoma. Cell Tissue Res. 2021;384:613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. McGahan BG, Neilsen BK, Kelly DL, et al. Assessment of vascularity in glioblastoma and its implications on patient outcomes. J Neurooncol. 2017;132(1):35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smith SJ, Tilly H, Ward JH, et al. CD105 (Endoglin) exerts prognostic effects via its role in the microvascular niche of paediatric high grade glioma. Acta Neuropathol. 2012;124(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mihić J, Rotim K, Vučić M, et al. Prognostic role of cd44 expression and neovascularization determined by endoglin (CD105) in glioblastoma patients. Acta Clin Croat. 2019;58(3):455–62.

    PubMed  PubMed Central  Google Scholar 

  135. Behrem S, Zarkovic K, Eskinja N, et al. Endoglin is a better marker than CD31 in evaluation of angiogenesis in glioblastoma. Croat Med J. 2005;46(3):417–22.

    PubMed  Google Scholar 

  136. Yao Y, Kubota T, Takeuchi H, et al. Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology. 2005;25(3):201–6.

    Article  PubMed  Google Scholar 

  137. Fridman WH, Zitvogel L, Sautès-Fridman C, et al. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34.

    Article  CAS  PubMed  Google Scholar 

  138. Lan C-Y, Wang Y, Xiong Y, et al. Apatinib combined with oral etoposide in patients with platinum-resistant or platinum-refractory ovarian cancer (AEROC): a phase 2, single-arm, prospective study. Lancet Oncol. 2018;19(9):1239–46.

    Article  CAS  PubMed  Google Scholar 

  139. Jin H, Cheng X, Pei Y, et al. Identification and verification of transgelin-2 as a potential biomarker of tumor-derived lung-cancer endothelial cells by comparative proteomics. J Proteom. 2016;16(136):77–88.

    Article  CAS  Google Scholar 

  140. Jeng KS, Sheen IS, Lin SS, et al. The role of endoglin in hepatocellular carcinoma. Int J Mol Sci. 2021;22(6):3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and cold tumors: is endoglin (CD105) a potential target for vessel normalization? Cancers. 2021;13(7):1552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Scientific and Technological Innovation Major Base of Guangxi (No. 2018–15-Z04), the State Project for Essential Drug Research and Development (No. 2019ZX09301132), Guangxi Key Research and Development Project (No. AB20117001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Huang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhong, L., Tang, C. et al. CD105: tumor diagnosis, prognostic marker and future tumor therapeutic target. Clin Transl Oncol 24, 1447–1458 (2022). https://doi.org/10.1007/s12094-022-02792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02792-0

Keywords

Navigation