Skip to main content

Advertisement

Log in

Distinct power of bone marrow microRNA signatures and tumor suppressor genes for early detection of acute leukemia

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Acute leukemia involving lymphocytic and myeloid cells is cancer with a high mortality rate. Swift and timely diagnosis might be a potential approach to improving patient prognosis and survival. The microRNA (miRNA) signatures are emerging nowadays for their promising diagnostic potential. MiRNA levels from bone marrow can be used as prognostic biomarkers.

Methods

The current study was designed to evaluate if the microRNAs and tumor suppressor genes (TSGs) profiling of hematopoietic bone marrow could help in acute leukemia early detection. Also, we assessed the DNA methyltransferase 3A (DNMT3A) expression and its possible epigenetic effects on miRNAs plus TSGs expression levels. The expression levels of ten miRNAs and four TSGs involved in acute lymphocytic leukemia (ALL) as well as acute myeloid leukemia (AML) were quantified in 43 and 40 bone marrow samples of ALL and AML patients in comparison with cancer-free subjects via real-time quantitative PCR (RT-qPCR). The receiver-operating-characteristic (ROC) analysis of miRNAs was performed in the study groups. Further, the correlation between the DNMT3A and TSGs was calculated.

Results

Significant differences were detected in the bone marrow expression of miRNAs and TSGs (P < 0.05) between acute leukemia patients and healthy group. ROC analysis confirmed the ability of miR-30a, miR-101, miR-132, miR-129, miR-124, and miR-143 to discriminate both ALL and AML patients with an area under the ROC curve of ≥ 0.80 (P < 0.001) and high accuracy. The correlation between DNMT3A and P15/P16 TSGs revealed that DNMT3A plays a vital role in epigenetic control of TSGs expression. Our findings indicated that the downregulation of bone marrow miRNAs and TSGs was accompanied by acute leukemia development.

Conclusions

The authors conclude that this study could contribute to introducing useful biomarkers for acute leukemia diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luan C, Yang Z, Chen B. The functional role of microRNA in acute lymphoblastic leukemia: relevance for diagnosis, differential diagnosis, prognosis, and therapy. Onco Targets Ther. 2015;8:2903–14. https://doi.org/10.2147/OTT.S92470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget. 2017;8:3666–82. https://doi.org/10.18632/oncotarget.12343.

    Article  PubMed  Google Scholar 

  3. Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A, Zarghami N. Epigenetics and Epi-miRNAs: potential markers/therapeutics in leukemia. Biomed Pharmacother. 2018;106:1668–77. https://doi.org/10.1016/j.biopha.2018.07.133.

    Article  CAS  PubMed  Google Scholar 

  4. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92. https://doi.org/10.1038/nrg.2017.80.

    Article  CAS  PubMed  Google Scholar 

  5. Scheller M, Ludwig AK, Göllner S, Rohde C, Krämer S, Stäble S, Janssen M, Müller J-A, He L, Bäumer N, Arnold C, Gerß J, Schönung M, Thiede C, Niederwiese C. Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nat Cancer. 2021;2:527–44.

    Article  CAS  Google Scholar 

  6. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015;15:152–65. https://doi.org/10.1038/nrc3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao X, Zhang W, Wang L, Zhao W. Genetic methylation and lymphoid malignancies: biomarkers of tumor progression and targeted therapy. Biomark Res. 2013;24:1–9.

    CAS  Google Scholar 

  8. Mohajeri N, Imani M, Akbarzadeh A, Sadighi A, Zarghami N. An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: possible applications in medical and biotechnological utilities. Biosens Bioelectron. 2019;144:111633.

    Article  CAS  Google Scholar 

  9. Imani M, Mohajeri N, Rastegar M, Zarghami N. Recent advances in FRET-Based biosensors for biomedical applications. Anal Biochem. 2021;630: 114323. https://doi.org/10.1016/j.ab.2021.114323.

    Article  CAS  PubMed  Google Scholar 

  10. Maurya NS, Kushwaha S, Chawade A, Mani A. Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-92692-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mohajeri N, Mostafavi E, Zarghami N. The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. J Photochem Photobiol B Biol. 2020;209: 111944. https://doi.org/10.1016/j.jphotobiol.2020.111944.

    Article  CAS  Google Scholar 

  12. Heidari F, Mohajeri N, Zarghami N. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem Biophys. 2021. https://doi.org/10.1007/s12013-021-01034-4.

    Article  PubMed  Google Scholar 

  13. Tamaddon M, Shokri G, Hosseini Rad SMA, Rad I, Emami Razavi À, Kouhkan F. Involved microRNAs in alternative polyadenylation intervene in breast cancer via regulation of cleavage factor “CFIm25.” Sci Rep. 2020;10:1–11. https://doi.org/10.1038/s41598-020-68406-3.

    Article  CAS  Google Scholar 

  14. Radnia F, Mohajeri N, Hashemi F, Imani M, Zarghami N. Design and development of folate-chitosan/CD nanogel: an efficient fluorescent platform for Cancer-specific delivery of AntimiR-21. React Funct Polym. 2021;160: 104814. https://doi.org/10.1016/j.reactfunctpolym.2021.104814.

    Article  CAS  Google Scholar 

  15. Soufi-zomorrod M, Hajifathali A, Kouhkan F, Mehdizadeh M, Rad SMAH, Soleimani M. MicroRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs. Tumor Biol. 2016;37:9527–34. https://doi.org/10.1007/s13277-016-4845-0.

    Article  CAS  Google Scholar 

  16. Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N. New insights toward nanostructured drug delivery of plant-derived polyphenol compounds: cancer treatment and gene expression profiles. Curr Cancer Drug Targets. 2021;21:689–701. https://doi.org/10.2174/1568009621666210525152802.

    Article  CAS  PubMed  Google Scholar 

  17. Mohajeri N, Sharifnia Z, Bandehpour M, Yarian F, Koochaki A, Mosaffa N, Parivara K, Kazemi B. An investigation of innate immune response of human blood macrophage to sense and antisense dsRNA nasrin. Trends Pept Protein Sci. 2016;1:88–98. https://doi.org/10.1016/j.physa.2007.11.038.

    Article  Google Scholar 

  18. Mardani R, Jafari MH, Abadi N, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 2019;234:8465–86. https://doi.org/10.1002/jcp.27776.

    Article  CAS  PubMed  Google Scholar 

  19. Hematol J, Zhang B, Xuan L, Nguyen T, Zhao D, Frankhouser DE, Wang H, Hoang DH, Qiao J, Abundis C, Brehove M, Su YL, Feng Y, Stein A, Ghoda L, Dorrance A, Perrotti D, Chen Z, Han A, Pichiorri F, Jin J, Talisman TJ, Caligiuri MA, Kuo CJ, Yoshimura A, Li L. Treatment - induced arteriolar revascularization and miR - 126 enhancement in bone marrow niche protect leukemic stem cells in AML. J Hematol Oncol. 2021;14:1–19. https://doi.org/10.1186/s13045-021-01133-y.

    Article  CAS  Google Scholar 

  20. Wallwitz J, Aigner P, Stoiber D. Tumor suppressors in acute myeloid leukemia. Leuk Lymphoma. 2021. https://doi.org/10.1080/10428194.2021.1907372.

    Article  PubMed  Google Scholar 

  21. Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of acute myeloid leukemia bone marrow circulating microRNAs. Int J Mol Sci. 2020;25:1–31. https://doi.org/10.3390/ijms21197065.

    Article  CAS  Google Scholar 

  22. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa JPJ, Godley LA, Li W, Goodell MA. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2012;44:23–31. https://doi.org/10.1038/ng.1009.

    Article  CAS  Google Scholar 

  23. Jiang LH, Da Zhang H, Tang JH. MiR-30a: a novel biomarker and potential therapeutic target for cancer. J Oncol. 2018. https://doi.org/10.1155/2018/5167829.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sheervalilou R, Lotfi H, Shirvaliloo M, Sharifi A, Nazemiyeh M, Zarghami N. Circulating MiR-10b, MiR-1 and MiR-30a expression profiles in lung cancer: Possible correlation with clinico-pathologic characteristics and lung cancer detection. Int J Mol Cell Med. 2019;8:118–29. https://doi.org/10.22088//IIJMCM.BUMS.8.2.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang CZ, Deng F, Li H, Wang DD, Zhang W, Ding L, Tang JH. MiR-101: a potential therapeutic target of cancers. Am J Transl Res. 2018;10:3310–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Yao J, Sun H, He K, Tong D, Song T, Huang C. MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A. Oncol Lett. 2017;13:329–38. https://doi.org/10.3892/ol.2016.5423.

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Ren J, Ren H, Fu JL, Yu D. MicroRNA-132 suppresses cell proliferation in human breast cancer by directly targeting FOXA1. Acta Pharmacol Sin. 2018;39:124–31. https://doi.org/10.1038/aps.2017.89.

    Article  CAS  PubMed  Google Scholar 

  28. Takai T, Tsujino T, Yoshikawa Y, Inamoto T, Sugito N, Kuranaga Y, Heishima K, Soga T, Hayashi K, Miyata K, Kataoka K, Azuma H, Akao Y. Synthetic miR-143 exhibited an anti-cancer effect via the downregulation of K-RAS networks of renal cell cancer cells in vitro and in vivo. Mol Ther. 2019;27:1017–27. https://doi.org/10.1016/j.ymthe.2019.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun X, Dai G, Yu L, Hu Q, Chen J, Guo W. MiR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2. Sci Rep. 2018;8:1–10. https://doi.org/10.1038/s41598-017-18739-3.

    Article  CAS  Google Scholar 

  30. Kovynev IB, Titov SE, Ruzankin PS, Agakishiev MM, Veryaskina YA, Nedel’ko VM, Pospelova TI, Zhimulev IF. Profiling 25 bone marrow microRNAs in acute leukemias and secondary nonleukemic hematopoietic conditions. Biomedicines. 2020;8:1–17. https://doi.org/10.3390/biomedicines8120607.

    Article  CAS  Google Scholar 

  31. Gao Y, Feng B, Han S, Lu L, Chen Y, Chu X, Wang R, Chen L. MicroRNA-129 in human cancers: from tumorigenesis to clinical treatment. Cell Physiol Biochem. 2016;39:2186–202. https://doi.org/10.1159/000447913.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y, Dong X, Chu G, Lai G, Zhang B, Wang L, Zhao Y. miR-137 downregulates c-kit expression in acute myeloid leukemia. Leuk Res. 2017;57:72–7. https://doi.org/10.1016/j.leukres.2017.01.028.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta N, Kumar R, Sharma A. Inhibition of miR-144/199 promote myeloma pathogenesis via upregulation of versican and FAK/STAT3 signaling. Mol Cell Biochem. 2021;476:2551–9. https://doi.org/10.1007/s11010-020-04038-5.

    Article  CAS  PubMed  Google Scholar 

  34. Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem. 2019;51:2647–93. https://doi.org/10.1159/000495956.

    Article  CAS  Google Scholar 

  35. Zununi Vahed S, Omidi Y, Ardalan M, Samadi N. Dysregulation of urinary miR-21 and miR-200b associated with interstitial fibrosis and tubular atrophy (IFTA) in renal transplant recipients. Clin Biochem. 2017;50:32–9. https://doi.org/10.1016/j.clinbiochem.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  36. Hospital QM, Medical S, Hospital QM, Kong H. Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol. 2001;19:2033–40.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Tabriz University of Medical Sciences (No: IR.TBZMED.VCR.REC.13 97.019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, collection of biological samples, and data analysis were performed by FM, VT, BP, and PF. The first graph and revised manuscript were written by NM. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fatemeh Kouhkan or Nosratollah Zarghami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was approved by the research ethical committee of TUOMS.

Informed consent

Informed consent was obtained by all patients in Payvand Laboratory, Tehran, Iran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 543 KB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memari, F., Tavakolpour, V., Mohajeri, N. et al. Distinct power of bone marrow microRNA signatures and tumor suppressor genes for early detection of acute leukemia. Clin Transl Oncol 24, 1372–1380 (2022). https://doi.org/10.1007/s12094-022-02781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02781-3

Keywords

Navigation