Skip to main content

Advertisement

Log in

Platelets for cancer treatment and drug delivery

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Extensive research is currently being conducted into a variety of bio-inspired biomimetic nanoparticles (NPs) with new cell simulation functions across the fields of materials science, chemistry, biology, physics, and engineering. Cells such as erythrocytes, platelets, and stem cells have been engineered as new drug carriers. The platelet-derived drug delivery system, which is a new targeted drug delivery system (TDDS), can effectively navigate the blood circulatory system and interact with the complex tumor microenvironment; it appears to outperform traditional anticancer drugs; hence, it has attracted considerable research interest. In this review, we describe innovative studies and outline the latest progress regarding the use of platelets as tumor targeting and drug delivery vehicles; we also highlight opportunities and challenges relevant to the manufacture of tumor-related platelet TDDSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng WW, Allen TM. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J Control Release. 2008;1:50–8.

    Article  Google Scholar 

  2. Yue X, Dai Z. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers. Adv Colloid Interface Sci. 2014;207:32–42.

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.

    Article  CAS  PubMed  Google Scholar 

  4. Yin Q, Shen J, Zhang Z, et al. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev. 2013;13–14:1699–715.

    Article  Google Scholar 

  5. Kolhatkar RB, Swaan P, Ghandehari H. Potential oral delivery of 7-ethyl-10-hydroxy-camptothecin (SN-38) using poly (amidoamine) dendrimers. Pharm Res. 2008;7:1723–9.

    Article  Google Scholar 

  6. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;9:3233.

    Article  Google Scholar 

  7. Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–34.

    Article  PubMed  Google Scholar 

  8. Zhang Y-N, Poon W, Tavares AJ, et al. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48.

    Article  CAS  PubMed  Google Scholar 

  9. De La Harpe KM, Kondiah PP, Choonara YE, et al. The hemocompatibility of nanoparticles: a review of cell–nanoparticle interactions and hemostasis. Cells. 2019;10:1209.

    Article  Google Scholar 

  10. Kunde SS, Wairkar S. Platelet membrane camouflaged nanoparticles: biomimetic architecture for targeted therapy. Int J Pharm. 2021;598:120395.

    Article  CAS  PubMed  Google Scholar 

  11. Choi B, Park W, Park S-B, et al. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods. 2020;177:2–14.

    Article  CAS  PubMed  Google Scholar 

  12. Li S, Liu J, Sun M, et al. Cell membrane-camouflaged nanocarriers for cancer diagnostic and therapeutic. Front Pharmacol. 2020;11:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure. Antiplatelet Agents. 2012;210:3–2.

    Article  CAS  Google Scholar 

  14. Ono-Uruga Y, Ikeda Y, Matsubara Y. Platelet production using adipose-derived mesenchymal stem cells: mechanistic studies and clinical application. J Thromb Haemost. 2021;2:342–50.

    Article  Google Scholar 

  15. Ehrmann C, Engel J, Moritz A, et al. Assessment of platelet biology in equine patients with systemic inflammatory response syndrome. J Vet Diagn Invest. 2021;33(2):300–7.

    Article  CAS  PubMed  Google Scholar 

  16. Contursi A, Grande R, Dovizio M, et al. Platelets in cancer development and diagnosis. Biochem Soc Trans. 2018;46(6):1517–27.

    Article  CAS  PubMed  Google Scholar 

  17. Goubran HA, Burnouf T, Stakiw J, et al. Platelet microparticle: a sensitive physiological “fine tuning” balancing factor in health and disease. Transfus Apher Sci. 2015;52(1):12–8.

    Article  PubMed  Google Scholar 

  18. Chen H, Lu A, Zhang X, et al. Design and development of ICCA as a dual inhibitor of GPIIb/IIIa and P-selectin receptors. Drug Des Dev Ther. 2018;12:2097.

    Article  CAS  Google Scholar 

  19. Xu P, Zuo H, Chen B, et al. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Sci Rep. 2017;7(1):1–16.

    Google Scholar 

  20. Dai L, Gu N, Chen B-A, et al. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants. Oncotarget. 2016;7(16):21076.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Wang J, Chen Z, et al. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett. 2018;18(9):5716–25.

    Article  CAS  PubMed  Google Scholar 

  22. Yao H, Lan J, Li C, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3(4):306–17.

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Fu J, Wang X, et al. Biomimetic “Nanoplatelets” as a Targeted Drug Delivery Platform for Breast Cancer Theranostics. ACS Appl Mater Interfaces. 2021;13(3):3605–21.

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Wu J, Williams GR, et al. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J Nanobiotechnol. 2019;17(1):1–16.

    Article  Google Scholar 

  25. Kim MW, Lee G, Niidome T, et al. Platelet-like gold nanostars for cancer therapy: the ability to treat cancer and evade immune reactions. Front Bioeng Biotechnol. 2020;8:133.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mei D, Gong L, Zou Y, et al. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy. J Control Release. 2020;324:341–53.

    Article  CAS  PubMed  Google Scholar 

  27. Pei W, Huang B, Chen S, et al. Platelet-mimicking drug delivery nanoparticles for enhanced chemo-photothermal therapy of breast cancer. Int J Nanomed. 2020;15:10151.

    Article  CAS  Google Scholar 

  28. Zarrin A, Foroozesh M, Hamidi M. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin Drug Deliv. 2014;11(3):433–47.

    Article  CAS  PubMed  Google Scholar 

  29. Peters D, Kastantin M, Kotamraju VR, et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci. 2009;106(24):9815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geranpayehvaghei M, Dabirmanesh B, Khaledi M, et al. Cancer-associated-platelet-inspired nanomedicines for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(5):e1702.

    Article  PubMed  Google Scholar 

  31. Li S, Zhang Y, Wang J, et al. Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nat Biomed Eng. 2017;1(8):667–79.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomed. 2013;8:61.

    Google Scholar 

  33. Lei Q, Wang D, Sun K, et al. Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front Cell Dev Biol. 2020;8:672.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim H-D, Song G-W, Park S, et al. Association between expression level of PD1 by tumor-infiltrating CD8+ T cells and features of hepatocellular carcinoma. Gastroenterology. 2018;155(6):1936–50.

    Article  CAS  PubMed  Google Scholar 

  35. Han X, Li H, Zhou D, et al. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc Chem Res. 2020;53(11):2521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang L, Li Y, Du Y, et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat Commun. 2019;10(1):1–15.

    Article  Google Scholar 

  37. Stroncek DF, Rebulla P. Platelet transfusions. The Lancet. 2007;370(9585):427–38.

    Article  Google Scholar 

  38. Han X, Chen J, Chu J, et al. Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. J Control Release. 2019;304:233–41.

    Article  CAS  PubMed  Google Scholar 

  39. Zuo H, Tao J, Shi H, et al. Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater. 2018;80:296–307.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou M, Lai W, Li G, et al. Platelet membrane-coated and VAR2CSA malaria protein-functionalized nanoparticles for targeted treatment of primary and metastatic cancer. ACS Appl Mater Interfaces. 2021;13(22):25635–48.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Liu G, Wei J, et al. Platelet membrane-based and tumor-associated platelet-targeted drug delivery systems for cancer therapy. Front Med. 2018;12(6):667–77.

    Article  PubMed  Google Scholar 

  42. Ding K, Zheng C, Sun L, et al. NIR light-induced tumor phototherapy using ICG delivery system based on platelet-membrane-camouflaged hollow bismuth selenide nanoparticles. Chin Chem Lett. 2020;35(5):1168–72.

    Article  Google Scholar 

  43. Vinholt P, Frederiksen H, Hvas AM, et al. Measurement of platelet aggregation, independently of patient platelet count: a flow-cytometric approach. J Thromb Haemost. 2017;15(6):1191–202.

    Article  CAS  PubMed  Google Scholar 

  44. Gillet J-P, Gottesman M M, Mechanisms of multidrug resistance in cancer. In Multi-drug Rresist Cancer, Springer, New york: 2010; pp 47–76.

    Book  Google Scholar 

  45. Bhattacharya DS, Svechkarev D, Bapat A, et al. Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44. ACS Biomater Sci Eng. 2020;6(6):3585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song Y, Huang Z, Liu X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice. Nanomed Nanotechnol Biol Med. 2019;15(1):13–24.

    Article  CAS  Google Scholar 

  47. Zhang F, Cao J, Chen X, et al. Noninvasive dynamic imaging of tumor early response to nanoparticle-mediated photothermal therapy. Theranostics. 2015;5(12):1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu L, Xie W, Zan H-M, et al. Platelet membrane-coated nanoparticles for targeted drug delivery and local chemo-photothermal therapy of orthotopic hepatocellular carcinoma. J Mater Chem B. 2020;8(21):4648–59.

    Article  CAS  PubMed  Google Scholar 

  49. Kasashima H, Duran A, Cid-Diaz T, et al. An orthotopic implantation mouse model of hepatocellular carcinoma with underlying liver steatosis. STAR Protoc. 2020;1(3):100185.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang N, Zhu H, Dong Y, et al. Establishment of an insufficient radiofrequency ablation orthotopic nude mouse model of hepatocellular carcinoma to study the invasiveness and metastatic potential of residual cancer. Oncol Lett. 2019;18(3):2548–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vines J, Lim D, Park H. Contemporary polymer-based nanoparticle systems for photothermal therapy. Polymers. 2018;10(12):1357.

    Article  PubMed Central  Google Scholar 

  52. Cheng K, Zhang R, Yang X, et al. One-for-all nanoplatform for synergistic mild cascade-potentiated ultrasound therapy induced with targeting imaging-guided photothermal therapy. ACS Appl Mater Interface. 2020;12(36):40052–66.

    Article  CAS  Google Scholar 

  53. Everts P, Onishi K, Jayaram P, et al. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020. Int J Mol Sci. 2020;21(20):77945.

    Article  Google Scholar 

  54. Hayashi T, Aminaka R, Fujimura Y, et al. A more efficient preparation system for HLA-eliminated platelets. Vox Sang. 2020;115(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  55. Du Y, Chen B. Combination of drugs and carriers in drug delivery technology and its development. Drug Des Dev Ther. 2019;13:1401–8.

    Article  CAS  Google Scholar 

  56. Wang X, Liang G, Hao X, et al. Bioinspired drug delivery carrier for enhanced tumor-targeting in melanoma mice model. J Biomed Nanotechnol. 2019;15(7):1482–91.

    Article  CAS  PubMed  Google Scholar 

  57. Kailashiya J, Gupta V, Dash D. Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget. 2019;10(56):5835–46.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sarkar S, Alam M, Shaw J, et al. Drug delivery using platelet cancer cell interaction. Pharm Res. 2013;30(11):2785–94.

    Article  CAS  PubMed  Google Scholar 

  59. Wang S, Li Z, Xu R. Human cancer and platelet interaction, a potential therapeutic target. Int J Mol Sci. 2018;19(4):1246.

    Article  PubMed Central  Google Scholar 

  60. Sharma D, Brummel-Ziedins K, Bouchard B, et al. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.

    Article  CAS  PubMed  Google Scholar 

  61. Koupenova M, Clancy L, Corkrey H, et al. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122(2):337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Van Der Meijden P, Heemskerk J. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–79.

    Article  PubMed  Google Scholar 

  63. Suzuki-Inoue K. Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. Hematol Am Soc Hematol Educ Program. 2019;2019(1):175–81.

    Article  Google Scholar 

  64. Paliwal R, Babu R, Palakurthi S. Nanomedicine scale-up technologies feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Innovation Major Base of Guangxi (No. 2018-15-Z04), the State Project for Essential Drug Research and Development (No. 2019ZX09301132), Guangxi Key Research and Development Project (No. AB20117001). Since we have been funded by the following funding number, add a funding number: National Natural Science Foundation of China (No.82060562).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: GX, ZZ, QC. Writing—review and editing: TW, WS, LG, XL, YH, ML. YZ, PW: Funding acquisition, LZ, JH: Critically revised.

Corresponding author

Correspondence to Jian He.

Ethics declarations

Conflict of interests

The authors have declared that no competing interest exists.

Ethical approval

This manuscript does not contain any human or animals related research, and does not involve any ethical experiments.

Informed consent

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Zhang, Z., Chen, Q. et al. Platelets for cancer treatment and drug delivery. Clin Transl Oncol 24, 1231–1237 (2022). https://doi.org/10.1007/s12094-021-02771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02771-x

Keywords

Navigation