Skip to main content

Advertisement

Log in

Current status and future perspectives in HER2 positive advanced gastric cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gastric cancer is one of the most common malignancy worldwide with a prognosis less than 1 year in unresectable or metastatic disease. HER2 expression is the main biomarker to lead the addition of trastuzumab to first line systemic chemotherapy improving the overall survival in advanced HER2-positivegastric adenocarcinoma. The inevitable development of resistance to trastuzumab remains a great problem inasmuch several treatment strategies that have proven effective in breast cancer failed to show clinical benefit in advanced gastric cancer. In this review, we summarize the available data on the mechanisms underlying primary and secondary resistance toHER2-targeted therapy and current challenges in the treatment of HER2-positive advanced gastric cancer refractory to trastuzumab. Further, we describe the prognostic value of new non-invasive screening techniques, the current development of novel agents such us HER2 antibody–drug conjugates and bispecific antibodies, and the strategies with antitumor activity on going.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2019 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19(9):1523–9. https://doi.org/10.1093/annonc/mdn169.

    Article  CAS  PubMed  Google Scholar 

  3. Rugge M, Fassan M, Graham DY. Epidemiology of gastric cancer. Gastric Cancer Principles Pract. 2015. https://doi.org/10.1007/978-3-319-15826-6_2.

    Article  Google Scholar 

  4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  5. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654–64. https://doi.org/10.1016/S0140-6736(16)30354-3.

    Article  CAS  PubMed  Google Scholar 

  6. Wagner AD, Grothe W, Haerting J, Kleber G, Grothey A, Fleig WE. Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data. J Clin Oncol. 2006;24(18):2903–9. https://doi.org/10.1200/JCO.2005.05.0245.

    Article  CAS  PubMed  Google Scholar 

  7. Fontana E, Smyth EC. Novel targets in the treatment of advanced gastric cancer: a perspective review. Therap Adv Med Oncol. 2016;8(2):113–25. https://doi.org/10.1177/1758834015616935.

    Article  CAS  Google Scholar 

  8. Smyth EC, Verheij M, Allum W, et al. Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v38–49. https://doi.org/10.1093/annonc/mdw350.

    Article  CAS  PubMed  Google Scholar 

  9. Zaanan A, Bouché O, Benhaim L, et al. Gastric cancer: French intergroup clinical practice guidelines for diagnosis, treatments and follow-up (SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO). Dig Liver Dis. 2018;50(8):768–79. https://doi.org/10.1016/j.dld.2018.04.025.

    Article  PubMed  Google Scholar 

  10. Petrioli R, Francini E, Roviello F, et al. Sequential treatment with epirubicin, oxaliplatin and 5FU (EOF) followed by docetaxel, oxaliplatin and 5FU (DOF) in patients with advanced gastric or gastroesophageal cancer: a single-institution experience. Cancer Chemother Pharmacol. 2015;75(5):941–7. https://doi.org/10.1007/s00280-015-2715-x.

    Article  CAS  PubMed  Google Scholar 

  11. Bass AJ, Thorsson V, Shmulevich I, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9. https://doi.org/10.1038/nature13480.

    Article  CAS  Google Scholar 

  12. Riese DJ, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. BioEssays. 1998;20(1):41–8. https://doi.org/10.1002/(SICI)1521-1878(199801)20:1%3c41::AID-BIES7%3e3.0.CO;2-V.

    Article  PubMed  Google Scholar 

  13. Van Der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. https://doi.org/10.1146/annurev.cb.10.110194.001343.

    Article  PubMed  Google Scholar 

  14. Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:1–9. https://doi.org/10.1155/2014/852748.

    Article  CAS  Google Scholar 

  15. Padhy LC, Shih C, Cowing D, Finkelstein R, Weinberg RA. Identification of a phosphoprotein specifically induced by the transforming DNA of rat neuroblastomas. Cell. 1982;28(4):865–71. https://doi.org/10.1016/0092-8674(82)90065-4.

    Article  CAS  PubMed  Google Scholar 

  16. Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312(5994):513–6. https://doi.org/10.1038/312513a0.

    Article  CAS  PubMed  Google Scholar 

  17. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87. https://doi.org/10.1038/sj.onc.1210477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olayioye MA. Intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res. 2001;3(6):385–9. https://doi.org/10.1186/bcr327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16. https://doi.org/10.1038/nrm1962.

    Article  CAS  PubMed  Google Scholar 

  20. Nahta R, Yuan LXH, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Can Res. 2005;65(23):11118–28. https://doi.org/10.1158/0008-5472.CAN-04-3841.

    Article  CAS  Google Scholar 

  21. Lee JW, Soung YH, Seo SH, et al. Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin Cancer Res. 2006;12(1):57–61. https://doi.org/10.1158/1078-0432.CCR-05-0976.

    Article  CAS  PubMed  Google Scholar 

  22. Hollywood DP, Hurst HC. A novel transcription factor, OB2-1, is required for overexpression of the proto-oncogene c-erbB-2 in mammary tumour lines. EMBO J. 1993;12(6):2369–75. https://doi.org/10.1002/j.1460-2075.1993.tb05891.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neve RM, Lane HA, Hynes NE. The role of overexpressed HER2 in transformation. Ann Oncol. 2001. https://doi.org/10.1093/annonc/12.suppl_1.S9.

    Article  PubMed  Google Scholar 

  24. Ménard S, Pupa SM, Campiglio M, Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene. 2003;22(43):6570–8. https://doi.org/10.1038/sj.onc.1206779.

    Article  CAS  PubMed  Google Scholar 

  25. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med. 2005;353(16):1652–4. https://doi.org/10.1056/nejmp058197.

    Article  CAS  PubMed  Google Scholar 

  26. Meza-Junco J, Au HJ, Sawyer MB. Critical appraisal of trastuzumab in treatment of advanced stomach cancer. Cancer Manag Res. 2011;3(1):57–64. https://doi.org/10.2147/CMR.S12698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rüschoff J, Hanna W, Bilous M, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol. 2012;25(5):637–50. https://doi.org/10.1038/modpathol.2011.198.

    Article  CAS  PubMed  Google Scholar 

  28. Lee S, de Boer WB, Fermoyle S, Platten M, Kumarasinghe MP. Human epidermal growth factor receptor 2 testing in gastric carcinoma: issues related to heterogeneity in biopsies and resections. Histopathology. 2011;59(5):832–40. https://doi.org/10.1111/j.1365-2559.2011.04017.x.

    Article  PubMed  Google Scholar 

  29. Koro K, Swanson PE, Yeh MM. HER2 testing in gastric and gastroesophageal adenocarcinoma. AJSP Rev Rep

  30. Jørgensen JT, Hersom M. HER2 as a prognostic marker in gastric cancer—a systematic analysis of data from the literature. J Cancer. 2012;3(1):137–44. https://doi.org/10.7150/jca.4090.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Allgayer H, Babic R, Gruetzner KU, Tarabichi A, Schildberg FW, Heiss MM. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol. 2000;18(11):2201–9. https://doi.org/10.1200/JCO.2000.18.11.2201.

    Article  CAS  PubMed  Google Scholar 

  32. Yonemura Y, Tanaka M, Sasaki T, Fushida S, Kimura H, Ohoyama S. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Can Res. 1991;51(3):1034–8.

    CAS  Google Scholar 

  33. Tanner M, Hollmén M, Junttila TT, et al. Amplification of HER-2 in gastric carcinoma: association with topoisomerase IIα gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16(2):273–8. https://doi.org/10.1093/annonc/mdi064.

    Article  CAS  PubMed  Google Scholar 

  34. Wolff AC, Hammond MEH, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45. https://doi.org/10.1200/JCO.2006.09.2775.

    Article  CAS  PubMed  Google Scholar 

  35. Drebin JA, Stern DF, Link VC, Weinberg RA, Greene MI. Monoclonal antibodies identify a cell-surface antigen associated with an activated cellular oncogene. Nature. 1984;312(5994):545–8. https://doi.org/10.1038/312545a0.

    Article  CAS  PubMed  Google Scholar 

  36. Brufsky A. Trastuzumab-based therapy for patients with HER2-positive breast cancer: From early scientific development to foundation of care. Am J Clin Oncol Cancer Clin Trials. 2010;33(2):186–95. https://doi.org/10.1097/COC.0b013e318191bfb0.

    Article  CAS  Google Scholar 

  37. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97. https://doi.org/10.1016/S0140-6736(10)61121-X.

    Article  CAS  PubMed  Google Scholar 

  38. Hofmann M, Stoss O, Shi D, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52(7):797–805. https://doi.org/10.1111/j.1365-2559.2008.03028.x.

    Article  CAS  PubMed  Google Scholar 

  39. Kurokawa Y, Sugimoto N, Miwa H, et al. Phase II study of trastuzumab in combination with S-1 plus cisplatin in HER2-positive gastric cancer (HERBIS-1). Br J Cancer. 2014;110(5):1163–8. https://doi.org/10.1038/bjc.2014.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryu MH, Yoo C, Kim JG, et al. Multicenter phase II study of trastuzumab in combination with capecitabine and oxaliplatin for advanced gastric cancer. Eur J Cancer. 2015;51(4):482–8. https://doi.org/10.1016/j.ejca.2014.12.015.

    Article  CAS  PubMed  Google Scholar 

  41. Gong J, Liu T, Fan Q, et al. Optimal regimen of trastuzumab in combination with oxaliplatin/ capecitabine in first-line treatment of HER2-positive advanced gastric cancer (CGOG1001): A multicenter, phase II trial. BMC Cancer. 2016. https://doi.org/10.1186/s12885-016-2092-9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Takahari D, Chin K, Ishizuka N, et al. Multicenter phase II study of trastuzumab with S-1 plus oxaliplatin for chemotherapy-naïve, HER2-positive advanced gastric cancer. Gastric Cancer. 2019;22(6):1238–46. https://doi.org/10.1007/s10120-019-00973-5.

    Article  CAS  PubMed  Google Scholar 

  43. Shah MA, Xu RH, Bang YJ, et al. HELOISE: Phase IIIb randomized multicenter study comparing standard-of-care and higher-dose trastuzumab regimens combined with chemotherapy as first-line therapy in patients with human epidermal growth factor receptor 2–positive metastatic gastric or gast. J Clin Oncol. 2017. https://doi.org/10.1200/JCO.2016.71.6852.

    Article  PubMed  PubMed Central  Google Scholar 

  44. ter Veer E, Creemers A, de Waal L, van Oijen MGH, van Laarhoven HWM. Comparing cytotoxic backbones for first-line trastuzumab-containing regimens in human epidermal growth factor receptor 2-positive advanced oesophagogastric cancer: a meta-analysis. Int J Cancer. 2018;143(2):438–48. https://doi.org/10.1002/ijc.31325.

    Article  CAS  PubMed  Google Scholar 

  45. Chaganty BKR, Lu Y, Qiu S, Somanchi SS, Lee DA, Fan Z. Trastuzumab upregulates expression of HLA-ABC and T cell costimulatory molecules through engagement of natural killer cells and stimulation of IFNγ secretion. OncoImmunology. 2016. https://doi.org/10.1080/2162402X.2015.1100790.

    Article  PubMed  Google Scholar 

  46. Janjigian YY, Chou JF, Simmons M, et al. First-line pembrolizumab (P), trastuzumab (T), capecitabine (C) and oxaliplatin (O) in HER2-positive metastatic esophagogastric adenocarcinoma (mEGA). J Clin Oncol. 2019;37(4):62–62. https://doi.org/10.1200/jco.2019.37.4_suppl.62.

    Article  Google Scholar 

  47. Xia W, Gerard CM, Liu L, Baudson NM, Ory TL, Spector NL. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene. 2005;24(41):6213–21. https://doi.org/10.1038/sj.onc.1208774.

    Article  CAS  PubMed  Google Scholar 

  48. Hecht JR, Bang YJ, Qin SK, et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC—A randomized phase III trial. J Clin Oncol. 2016;34(5):443–51. https://doi.org/10.1200/JCO.2015.62.6598.

    Article  CAS  PubMed  Google Scholar 

  49. Harbeck N, Beckmann MW, Rody A, et al. HER2 dimerization inhibitor pertuzumab—Mode of action and clinical data in breast cancer. Breast Care. 2013;8(1):49–55. https://doi.org/10.1159/000346837.

    Article  PubMed  PubMed Central  Google Scholar 

  50. von Minckwitz G, Procter M, de Azambuja E, et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med. 2017;377(2):122–31. https://doi.org/10.1056/nejmoa1703643.

    Article  CAS  Google Scholar 

  51. Baselga J, Cortés J, Kim S-B, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19. https://doi.org/10.1056/nejmoa1113216.

    Article  CAS  PubMed  Google Scholar 

  52. Tabernero J, Hoff PM, Shen L, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018;19(10):1372–84. https://doi.org/10.1016/S1470-2045(18)30481-9.

    Article  CAS  PubMed  Google Scholar 

  53. Satoh T, Doi T, Ohtsu A, et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN—A randomized, phase III study. J Clin Oncol. 2014;32(19):2039–49. https://doi.org/10.1200/JCO.2013.53.6136.

    Article  CAS  PubMed  Google Scholar 

  54. Thuss-Patience PC, Shah MA, Ohtsu A, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017;18(5):640–53. https://doi.org/10.1016/S1470-2045(17)30111-0.

    Article  CAS  PubMed  Google Scholar 

  55. Von Minckwitz G, Du Bois A, Schmidt M, et al. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a German breast group 26/breast international group 03–05 study. J Clin Oncol. 2009;27(12):1999–2006. https://doi.org/10.1200/JCO.2008.19.6618.

    Article  CAS  Google Scholar 

  56. Li Q, Jiang H, Li H, et al. Efficacy of trastuzumab beyond progression in HER2 positive advanced gastric cancer: a multicenter prospective observational cohort study. Oncotarget. 2016;7(31):50656–65. https://doi.org/10.18632/oncotarget.10456.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Palle J, Tougeron D, Pozet A, et al. Trastuzumab beyond progression in patients with HER2-positive advanced gastric adenocarcinoma: a multicenter AGEO study. Oncotarget. 2017;8(60):101383–93. https://doi.org/10.18632/oncotarget.20711.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Narita Y, Kadowaki S, Masuishi T, et al. Correlation between human epidermal growth factor receptor 2 expression level and efficacy of trastuzumab beyond progression in metastatic gastric cancer. Oncol Lett. 2017;14(2):2545–51. https://doi.org/10.3892/ol.2017.6409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Horita Y, Nishino M, Sugimoto S, et al. Phase II clinical trial of second-line weekly paclitaxel plus trastuzumab for patients with HER2-positive metastatic gastric cancer. Anticancer Drugs. 2019;30(1):98–104. https://doi.org/10.1097/CAD.0000000000000691.

    Article  CAS  PubMed  Google Scholar 

  60. Makiyama A, Sagara K, Kawada J, et al. A randomized phase II study of weekly paclitaxel ± trastuzumab in patients with HER2-positive advanced gastric or gastro-esophageal junction cancer refractory to trastuzumab combined with fluoropyrimidine and platinum: WJOG7112G (T-ACT). J Clin Oncol. 2018;36(15):4011–4011. https://doi.org/10.1200/jco.2018.36.15_suppl.4011.

    Article  Google Scholar 

  61. Kijima T, Arigami T, Uenosono Y, et al. Comparison of HER2 Status before and after Trastuzumab-based chemotherapy in patients with advanced gastric cancer. Anticancer Res. 2020;40(1):75–80. https://doi.org/10.21873/anticanres.13927.

    Article  CAS  PubMed  Google Scholar 

  62. Fornaro L, Vivaldi C, Parnofiello A, et al. Validated clinico-pathologic nomogram in the prediction of HER2 status in gastro-oesophageal cancer. Br J Cancer. 2019;120(5):522–6. https://doi.org/10.1038/s41416-019-0399-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee HE, Park KU, Yoo SB, et al. Clinical significance of intratumoral HER2 heterogeneity in gastric cancer. Eur J Cancer. 2013;49(6):1448–57. https://doi.org/10.1016/j.ejca.2012.10.018.

    Article  CAS  PubMed  Google Scholar 

  64. Kim J, Fox C, Peng S, et al. Preexisting oncogenic events impact trastuzumab sensitivity in ERBB2-amplified gastroesophageal adenocarcinoma. J Clin Investig. 2014;124(12):5145–58. https://doi.org/10.1172/JCI75200.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Deguchi Y, Okabe H, Oshima N, et al. PTEN loss is associated with a poor response to trastuzumab in HER2-overexpressing gastroesophageal adenocarcinoma. Gastric Cancer. 2017;20(3):416–27. https://doi.org/10.1007/s10120-016-0627-z.

    Article  CAS  PubMed  Google Scholar 

  66. Kim C, Lee CK, Chon HJ, et al. PTEN loss and level of HER2 amplification is associated with trastuzumab resistance and prognosis in HER2-positive gastric cancer. Oncotarget. 2017;8(69):113494–501. https://doi.org/10.18632/oncotarget.23054.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Huang LT, Ma JT, Zhang SL, et al. Durable clinical response to pyrotinib after resistance to prior anti-HER2 therapy for HER2-positive advanced gastric cancer: a case report. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.01453.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Minuti G, Cappuzzo F, Duchnowska R, et al. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer. 2012;107(5):793–9. https://doi.org/10.1038/bjc.2012.335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi N, Furuta K, Taniguchi H, et al. Serum level of hepatocyte growth factor is a novel marker of predicting the outcome and resistance to the treatment with trastuzumab in HER2-positive patients with metastatic gastric cancer. Oncotarget. 2016;7(4):4925–38. https://doi.org/10.18632/oncotarget.6753.

    Article  PubMed  Google Scholar 

  70. Kwak EL, Ahronian LG, Siravegna G, et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-Amplified esophagogastric cancer. Cancer Discov. 2015;5(12):1271–81. https://doi.org/10.1158/2159-8290.CD-15-0748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pietrantonio F, Fuca G, Morano F, et al. Biomarkers of primary resistance to trastuzumab in HER2-positive metastatic gastric cancer patients: the AMNESIA case-control study. Clin Cancer Res. 2018;24(5):1082–9. https://doi.org/10.1158/1078-0432.CCR-17-2781.

    Article  CAS  PubMed  Google Scholar 

  72. Vernieri C, Milano M, Brambilla M, et al. Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: Current knowledge, new research directions and therapeutic perspectives. Crit Rev Oncol Hematol. 2019;139:53–66. https://doi.org/10.1016/j.critrevonc.2019.05.001.

    Article  PubMed  Google Scholar 

  73. Palle J, Rochand A, Pernot S, Gallois C, Taïeb J, Zaanan A. Human epidermal growth factor receptor 2 (HER2) in advanced gastric cancer: current knowledge and future perspectives. Drugs. 2020;80(4):401–15. https://doi.org/10.1007/s40265-020-01272-5.

    Article  CAS  PubMed  Google Scholar 

  74. Bozzetti C, Negri FV, Lagrasta CA, et al. Comparison of HER2 status in primary and paired metastatic sites of gastric carcinoma. Br J Cancer. 2011;104(9):1372–6. https://doi.org/10.1038/bjc.2011.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zang ZJ, Ong CK, Cutcutache I, et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Can Res. 2011;71(1):29–39. https://doi.org/10.1158/0008-5472.CAN-10-1749.

    Article  CAS  Google Scholar 

  76. Ucar DA, Kurenova E, Garrett TJ, et al. Disruption of the protein interaction between FAK and IGF-1R inhibits melanoma tumor growth. Cell Cycle. 2012;11(17):3250–9. https://doi.org/10.4161/cc.21611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arienti C, Zanoni M, Pignatta S, et al. Preclinical evidence of multiple mechanisms underlying trastuzumab resistance in gastric cancer. Oncotarget. 2016;7(14):18424–39. https://doi.org/10.18632/oncotarget.7575.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gambardella V, Gimeno-Valiente F, Tarazona N, et al. Nrf2 through RPs6 activation is related to anti-HER2 drug resistance in HER2-amplified gastric cancer. Clin Cancer Res. 2019;25(5):1639–49. https://doi.org/10.1158/1078-0432.CCR-18-2421.

    Article  CAS  PubMed  Google Scholar 

  79. Piro G, Carbone C, Cataldo I, et al. An FGFR3 autocrine loop sustains acquired resistance to trastuzumab in gastric cancer patients. Clin Cancer Res. 2016;22(24):6164–75. https://doi.org/10.1158/1078-0432.CCR-16-0178.

    Article  CAS  PubMed  Google Scholar 

  80. Mao L, Sun A, Wu JZ, Tang J. Involvement of microRNAs in HER2 signaling and trastuzumab treatment. Tumor Biol. 2016;37(12):15437–46. https://doi.org/10.1007/s13277-016-5405-3.

    Article  CAS  Google Scholar 

  81. Sui M, Jiao A, Zhai H, et al. Upregulation of miR-125b is associated with poor prognosis and trastuzumab resistance in HER2-positive gastric cancer. Exp Ther Med. 2017;14(1):657–63. https://doi.org/10.3892/etm.2017.4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim HP, Han SW, Song SH, et al. Testican-1-mediated epithelial-mesenchymal transition signaling confers acquired resistance to lapatinib in HER2-positive gastric cancer. Oncogene. 2014;33(25):3334–41. https://doi.org/10.1038/onc.2013.285.

    Article  CAS  PubMed  Google Scholar 

  83. Shi J, Wang Y, Zeng L, et al. Disrupting the interaction of BRD4 with diacetylated twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 2014;25(2):210–25. https://doi.org/10.1016/j.ccr.2014.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Arigami T, Uenosono Y, Hirata M, Yanagita S, Ishigami S, Natsugoe S. B7–H3 expression in gastric cancer: A novel molecular blood marker for detecting circulating tumor cells. Cancer Sci. 2011;102(5):1019–24. https://doi.org/10.1111/j.1349-7006.2011.01877.x.

    Article  CAS  PubMed  Google Scholar 

  85. Tsujiura M, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Otsuji E. Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol. 2014;20(12):3265–86. https://doi.org/10.3748/wjg.v20.i12.3265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu Y, Ling Y, Qi Q, et al. Prognostic value of circulating tumor cells in advanced gastric cancer patients receiving chemotherapy. Mol Clin Oncol. 2017;6(2):235–42. https://doi.org/10.3892/mco.2017.1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang S, Zheng G, Cheng B, et al. Circulating tumor cells (CTCs) detected by RT-PCR and its prognostic role in gastric cancer: a meta-analysis of published literature. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0099259.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Akca H, Demiray A, Yaren A, et al. Utility of serum DNA and pyrosequencing for the detection of EGFR mutations in non-small cell lung cancer. Cancer Genet. 2013;206(3):73–80. https://doi.org/10.1016/j.cancergen.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  89. Neumann MHD, Bender S, Krahn T, Schlange T. ctDNA and CTCs in liquid biopsy—current status and where we need to Progress. Comput Struct Biotechnol J. 2018;16:190–5. https://doi.org/10.1016/j.csbj.2018.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014. https://doi.org/10.1126/scitranslmed.3007094.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91. https://doi.org/10.1158/2159-8290.CD-15-1483.

    Article  CAS  PubMed  Google Scholar 

  92. Sumbal S, Javed A, Afroze B, et al. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection. Exp Hematol. 2018;65:17–28. https://doi.org/10.1016/j.exphem.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  93. Kinugasa H, Nouso K, Tanaka T, et al. Droplet digital PCR measurement of HER2 in patients with gastric cancer. Br J Cancer. 2015;112(10):1652–5. https://doi.org/10.1038/bjc.2015.129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shoda K, Masuda K, Ichikawa D, et al. HER2 amplification detected in the circulating DNA of patients with gastric cancer: a retrospective pilot study. Gastric Cancer. 2015;18(4):698–710. https://doi.org/10.1007/s10120-014-0432-5.

    Article  CAS  PubMed  Google Scholar 

  95. Maron SB, Chase LM, Lomnicki S, et al. Circulating tumor DNA sequencing analysis of gastroesophageal adenocarcinoma. Clin Cancer Res. 2019;25(23):7098–112. https://doi.org/10.1158/1078-0432.CCR-19-1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang H, Li B, Liu Z, et al. HER2 copy number of circulating tumour DNA functions as a biomarker to predict and monitor trastuzumab efficacy in advanced gastric cancer. Eur J Cancer. 2018;88:92–100. https://doi.org/10.1016/j.ejca.2017.10.032.

    Article  CAS  PubMed  Google Scholar 

  97. Riquet M, Rivera C, Gibault L, et al. Extension lymphatique du cancer du poumon: Une anatomie enchaînée dans des zones. Rev Pneumol Clin. 2014;70(1–2):16–25. https://doi.org/10.1016/j.pneumo.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  98. Mavroudis D. Circulating cancer cells. Ann Oncol. 2010. https://doi.org/10.1093/annonc/mdq378.

    Article  PubMed  Google Scholar 

  99. Tseng JY, Yang CY, Liang SC, Liu RS, Jiang JK, Lin CH. Dynamic changes in numbers and properties of circulating tumor cells and their potential applications. Cancers. 2014;6(4):2369–86. https://doi.org/10.3390/cancers6042369.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nevisi F, Yaghmaie M, Pashaiefar H, et al. Correlation of HER2, MDM2, c-MYC, c-MET, and TP53 copy number alterations in circulating tumor cells with tissue in gastric cancer patients: A pilot study. Iran Biomed J. 2020;24(1):47–53. https://doi.org/10.29252/ibj.24.1.47.

    Article  PubMed  Google Scholar 

  101. Mishima Y, Matsusaka S, Chin K, et al. Detection of HER2 amplification in circulating tumor cells of HER2-negative gastric cancer patients. Target Oncol. 2017;12(3):341–51. https://doi.org/10.1007/s11523-017-0493-6.

    Article  PubMed  Google Scholar 

  102. Peng Z, Liu Y, Li Y, et al. Serum HER2 extracellular domain as a potential alternative for tissue HER2 status in metastatic gastric cancer patients. Biomark Med. 2014;8(5):663–70. https://doi.org/10.2217/bmm.14.10.

    Article  CAS  PubMed  Google Scholar 

  103. Witzel I, Loibl S, Von Minckwitz G, et al. Predictive value of HER2 serum levels in patients treated with lapatinib or trastuzumab-a translational project in the neoadjuvant GeparQuinto trial. Br J Cancer. 2012;107(6):956–60. https://doi.org/10.1038/bjc.2012.353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lipton A, Leitzel K, Ali SM, et al. Human epidermal growth factor receptor 2 (HER2) extracellular domain levels are associated with progression-free survival in patients with HER2-positive metastatic breast cancer receiving lapatinib monotherapy. Cancer. 2011;117(21):5013–20. https://doi.org/10.1002/cncr.26101.

    Article  CAS  PubMed  Google Scholar 

  105. Janjigian YY, Viola-Villegas N, Holland JP, et al. Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and89Zr-trastuzumab PET. J Nucl Med. 2013;54(6):936–43. https://doi.org/10.2967/jnumed.112.110239.

    Article  CAS  PubMed  Google Scholar 

  106. O’Donoghue JA, Lewis JS, Pandit-Taskar N, et al. Pharmacokinetics, biodistribution, and radiation dosimetry for 89 Zr-trastuzumab in patients with esophagogastric cancer. J Nucl Med. 2018;59(1):161–6. https://doi.org/10.2967/jnumed.117.194555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–108. https://doi.org/10.1158/1078-0432.CCR-15-2822.

    Article  CAS  PubMed  Google Scholar 

  108. Shi J, Li F, Yao X, et al. The HER4-YAP1 axis promotes trastuzumab resistance in HER2-positive gastric cancer by inducing epithelial and mesenchymal transition. Oncogene. 2018;37(22):3022–38. https://doi.org/10.1038/s41388-018-0204-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shitara K, Iwata H, Takahashi S, et al. Trastuzumab deruxtecan (DS-8201a)in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20(6):827–36. https://doi.org/10.1016/S1470-2045(19)30088-9.

    Article  CAS  PubMed  Google Scholar 

  110. Doi T, Shitara K, Naito Y, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 2017;18(11):1512–22. https://doi.org/10.1016/S1470-2045(17)30604-6.

    Article  CAS  PubMed  Google Scholar 

  111. Shitara K, Bang Y-J, Iwasa S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382(25):2419–30. https://doi.org/10.1056/nejmoa2004413.

    Article  CAS  PubMed  Google Scholar 

  112. Takegawa N, Tsurutani J, Kawakami H, et al. [fam-] trastuzumab deruxtecan, antitumor activity is dependent on HER2 expression level rather than on HER2 amplification. Int J Cancer. 2019;145(12):3414–24. https://doi.org/10.1002/ijc.32408.

    Article  CAS  PubMed  Google Scholar 

  113. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–46. https://doi.org/10.1111/cas.12966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Catenacci DVT, Kang YK, Park H, et al. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22–05): a single-arm, phase 1b–2 trial. Lancet Oncol. 2020;21(8):1066–76. https://doi.org/10.1016/S1470-2045(20)30326-0.

    Article  CAS  PubMed  Google Scholar 

  115. Catenacci DVT, Lim KH, Uronis HE, et al. Antitumor activity of margetuximab (M) plus pembrolizumab (P) in patients (pts) with advanced HER2+ (IHC3+) gastric carcinoma (GC). J Clin Oncol. 2019;37(4):65. https://doi.org/10.1200/jco.2019.37.4_suppl.65.

    Article  Google Scholar 

  116. Combination Margetuximab, INCMGA00012, MGD013, and Chemotherapy Phase 2 / 3 Trial in HER2+ Gastric / GEJ Cancer (MAHOGANY) - Cerca con Google.

  117. ZW25 effective in HER2-positive cancers. Cancer Discov. 2019;9(1):8. https://doi.org/10.1158/2159-8290.CD-NB2018-162

  118. Meric-Bernstam F, Beeram M, Mayordomo JI, et al. Single agent activity of ZW25, a HER2-targeted bispecific antibody, in heavily pretreated HER2-expressing cancers. J Clin Oncol. 2018;36(15):2500. https://doi.org/10.1200/jco.2018.36.15_suppl.2500.

    Article  Google Scholar 

  119. O’Donovan N, Byrne AT, O’Connor AE, McGee S, Gallagher WM, Crown J. Synergistic interaction between trastuzumab and EGFR/HER-2 tyrosine kinase inhibitors in HER-2 positive breast cancer cells. Invest New Drugs. 2011;29(5):752–9. https://doi.org/10.1007/s10637-010-9415-5.

    Article  CAS  PubMed  Google Scholar 

  120. Sanchez-Vega F, Hechtman JF, Castel P, et al. Egfr and MET amplifications determine response to HER2 inhibition in ERBB2-amplified esophagogastric cancer. Cancer Discov. 2019;9–2:199–209. https://doi.org/10.1158/2159-8290.CD-18-0598.

    Article  Google Scholar 

  121. Minkovsky N, Berezov A. BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr Opin Investig Drugs. 2008;9(12):1336–46.

    CAS  PubMed  Google Scholar 

  122. Kim TY, Han HS, Lee KW, et al. A phase I/II study of poziotinib combined with paclitaxel and trastuzumab in patients with HER2-positive advanced gastric cancer. Gastric Cancer. 2019;22(6):1206–14. https://doi.org/10.1007/s10120-019-00958-4.

    Article  CAS  PubMed  Google Scholar 

  123. Oh DY, Lee KW, Cho JY, et al. Phase II trial of dacomitinib in patients with HER2-positive gastric cancer. Gastric Cancer. 2016;19(4):1095–103. https://doi.org/10.1007/s10120-015-0567-z.

    Article  CAS  PubMed  Google Scholar 

  124. Coutzac C, Pernot S, Chaput N, Zaanan A. Immunotherapy in advanced gastric cancer, is it the future? Crit Rev Oncol Hematol. 2019;133:25–32. https://doi.org/10.1016/j.critrevonc.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  125. Shitara K, Özgüroğlu M, Bang YJ, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392(10142):123–33. https://doi.org/10.1016/S0140-6736(18)31257-1.

    Article  CAS  PubMed  Google Scholar 

  126. Tabernero J, Van Cutsem E, Bang Y-J, et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III KEYNOTE-062 study. J Clin Oncol. 2019;37(18):4007. https://doi.org/10.1200/jco.2019.37.18_suppl.lba4007.

    Article  Google Scholar 

  127. Bang YJ, Yañez Ruiz E, Van Cutsem E, et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN Gastric 300. Ann Oncol. 2018;29(10):2052–60. https://doi.org/10.1093/annonc/mdy264.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kiyozumi Y, Iwatsuki M, Yamashita K, Koga Y, Yoshida N, Baba H. Update on targeted therapy and immune therapy for gastric cancer, 2018. J Cancer Metastas Treat. 2018;4(6):31. https://doi.org/10.20517/2394-4722.2017.77.

    Article  CAS  Google Scholar 

  129. Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461–71. https://doi.org/10.1016/S0140-6736(17)31827-5.

    Article  CAS  PubMed  Google Scholar 

  130. Satoh T, Kang YK, Chao Y, et al. Exploratory subgroup analysis of patients with prior trastuzumab use in the ATTRACTION-2 trial: a randomized phase III clinical trial investigating the efficacy and safety of nivolumab in patients with advanced gastric/gastroesophageal junction cancer. Gastric Cancer. 2020;23(1):143–53. https://doi.org/10.1007/s10120-019-00970-8.

    Article  CAS  PubMed  Google Scholar 

  131. Boku N, Ryu MH, Kato K, et al. Safety and efficacy of nivolumab in combination with s-1/capecitabine plus oxaliplatin in patients with previously untreated, unresectable, advanced, or recurrent gastric/gastroesophageal junction cancer: interim results of a randomized, phase II trial (a. Ann Oncol. 2019;30(2):250–8. https://doi.org/10.1093/annonc/mdy540.

    Article  CAS  PubMed  Google Scholar 

  132. Janjigian YY, Adenis A, Aucoin J-S, et al. Checkmate 649: A randomized, multicenter, open-label, phase 3 study of nivolumab (Nivo) plus ipilimumab (Ipi) versus oxaliplatin plus fluoropyrimidine in patients (Pts) with previously untreated advanced or metastatic gastric (G) or gastroesophageal junct. J Clin Oncol. 2017;35(4):213. https://doi.org/10.1200/jco.2017.35.4_suppl.tps213.

    Article  Google Scholar 

  133. Kelly RJ, Chung K, Gu Y, et al. Phase Ib/II study to evaluate the safety and antitumor activity of durvalumab (MEDI4736) and tremelimumab as monotherapy or in combination, in patients with recurrent or metastatic gastric/gastroesophageal junction adenocarcinoma. J ImmunoTherapy Cancer. 2015. https://doi.org/10.1186/2051-1426-3-s2-p157.

    Article  Google Scholar 

  134. Kelly RJ, Lee J, Bang Y-J, et al. Safety and efficacy of durvalumab in combination with tremelimumab, durvalumab monotherapy, and tremelimumab monotherapy in patients with advanced gastric cancer. J Clin Oncol. 2018;36(15):4031–4031. https://doi.org/10.1200/jco.2018.36.15_suppl.4031.

    Article  Google Scholar 

  135. Moehler M, Ryu MH, Dvorkin M, et al. Maintenance avelumab versus continuation of first-line chemotherapy in gastric cancer: JAVELIN Gastric 100 study design. Future Oncol. 2019;15(6):567–77. https://doi.org/10.2217/fon-2018-0668.

    Article  CAS  PubMed  Google Scholar 

  136. JapicCTI J. An Investigational Immuno-therapy Study to Assess the Safety, Tolerability and Effectiveness of Anti-LAG-3 With and Without Anti-PD-1 in the Treatment of Solid Tumors. http://www.who.int/trialsearch/Trial2.aspx?TrialID=JPRN-JapicCTI-183890. Published online 2018.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Roviello.

Ethics declarations

Conflict of interest

No author declares any conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roviello, G., Catalano, M., Iannone, L.F. et al. Current status and future perspectives in HER2 positive advanced gastric cancer. Clin Transl Oncol 24, 981–996 (2022). https://doi.org/10.1007/s12094-021-02760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02760-0

Keywords

Navigation