Skip to main content

Advertisement

Log in

The TRIM proteins in cancer: from expression to emerging regulatory mechanisms

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

New clinical evidence suggests that dysregulation of the ubiquitin-mediated destruction of tumor suppressors or oncogene products is probably engaged in the etiology of leukemia and carcinoma. The superfamily of tripartite motif (TRIM)-containing protein family is among the biggest recognized single protein RING finger E3 ubiquitin ligases that are considered vital carcinogenesis regulators, which is not shocking since TRIM proteins are engaged in various biological processes, including cell growth, development, and differentiation; hence, TRIM proteins’ alterations may influence apoptosis, cell proliferation, and transcriptional regulation. In this review article, the various mechanisms through which TRIM proteins exert their role in the most prevalent malignancies including lung, prostate, colorectal, liver, breast, brain cancer, and leukemia are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADC:

Adenocarcinoma

APL:

Acute promyelocytic leukemia

BRAF:

B-Raf proto-oncogene serine/threonine-protein kinase

TRIM:

The superfamily of tripartite motif-containing proteins

ISG15:

IFN-stimulated protein of 15

PML:

Promyelocytic leukemia gene

SUMO:

Small ubiquitin-like modifier

RET:

Rearranged during transfection

NSCLC:

Non-small cell lung cancer

SCLC:

Small cell lung cancer

LCC:

Large cell carcinoma

SCC:

Squamous cell carcinoma

Mdm2:

Mouse double minute 2 homolog

STAT3:

Signal transducer and activator of transcription 3

TNBC:

Triple-negative breast cancer

Nrf2:

Nuclear factor erythroid 2–related factor 2

GBM:

Glioblastoma

References

  1. Ozato K, Shin D-M, Chang T-H, Morse HC 3rd. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008;8(11):849–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Watanabe M, Hatakeyama S. TRIM proteins and diseases. J Biochem. 2017;161(2):135–44.

    CAS  PubMed  Google Scholar 

  3. Cappadocia L, Lima CD. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem Rev. 2018;118(3):889–918.

    CAS  PubMed  Google Scholar 

  4. Liu J, Zhang C, Wang X, Hu W, Feng Z. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis. 2021;8(4):463–74.

    CAS  PubMed  Google Scholar 

  5. Giraldo MI, Hage A, van Tol S, Rajsbaum R. TRIM proteins in host defense and viral pathogenesis. Cur Clin Microbiol Rep. 2020;7(4):1–14.

    Google Scholar 

  6. Mandell MA, Saha B, Thompson TA. The tripartite nexus: autophagy, cancer, and tripartite motif-containing protein family members. Front Pharmacol. 2020;11:308.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hao L, Du B, Xi X. TRIM59 is a novel potential prognostic biomarker in patients with non-small cell lung cancer: a research based on bioinformatics analysis. Oncol Lett. 2017;14(2):2153–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aierken G, Seyiti A, Alifu M, Kuerban G. Knockdown of tripartite-59 (TRIM59) inhibits cellular proliferation and migration in human cervical cancer cells. Oncol Res. 2017;25(3):381–8.

    PubMed  PubMed Central  Google Scholar 

  9. Guan D, Kao H-Y. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci. 2015;5(1):60.

    PubMed  PubMed Central  Google Scholar 

  10. Valletti A, Marzano F, Pesole G, Sbisà E, Tullo A. Targeting chemoresistant tumors: could TRIM proteins-p53 axis be a possible answer? Int J Mol Sci. 2019;20(7):1776.

    CAS  PubMed Central  Google Scholar 

  11. Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11(11):792–804.

    CAS  PubMed  Google Scholar 

  12. Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42(4):297–311.

    CAS  PubMed  Google Scholar 

  13. Di Rienzo M, Romagnoli A, Antonioli M, Piacentini M, Fimia GM. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ. 2020;27(3):887–902.

    PubMed  PubMed Central  Google Scholar 

  14. Shriwash N, Singh P, Arora S, Ali SM, Ali S, Dohare R. Identification of differentially expressed genes in small and non-small cell lung cancer based on meta-analysis of mRNA. Heliyon. 2019;5(6):e01707.

    PubMed  PubMed Central  Google Scholar 

  15. Wang X, Shi W, Shi H, Lu S, Wang K, Sun C, et al. TRIM11 overexpression promotes proliferation, migration and invasion of lung cancer cells. J Exp Clin Cancer Res. 2016;35(1):100.

    PubMed  PubMed Central  Google Scholar 

  16. Huang J, Tang L, Zhao Y, Ding W. TRIM11 promotes tumor angiogenesis via activation of STAT3/VEGFA signaling in lung adenocarcinoma. Am J Cancer Res. 2019;9(9):2019–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Han Y, Tian H, Chen P, Lin Q. TRIM47 overexpression is a poor prognostic factor and contributes to carcinogenesis in non-small cell lung carcinoma. Oncotarget. 2017;8(14):22730.

    PubMed  PubMed Central  Google Scholar 

  18. Xing Y, Meng Q, Chen X, Zhao Y, Liu W, Hu J, et al. TRIM44 promotes proliferation and metastasis in non-small cell lung cancer via mTOR signaling pathway. Oncotarget. 2016;7(21):30479.

    PubMed  PubMed Central  Google Scholar 

  19. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20(1):228.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hai J, Zhu C-Q, Wang T, Organ SL, Shepherd FA, Tsao M-S. TRIM14 is a putative tumor suppressor and regulator of innate immune response in non-small cell lung cancer. Sci Rep. 2017;7(1):39692.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu K, Sui Y, Fu L. Identification of TRIM56 as a potential biomarker for lung adenocarcinoma. Cancer Manag Res. 2021;13:2201.

    PubMed  PubMed Central  Google Scholar 

  22. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mangangcha IR, Malik MZ, Küçük Ö, Ali S, Singh RKB. Identification of key regulators in prostate cancer from gene expression datasets of patients. Sci Rep. 2019;9(1):16420.

    PubMed  PubMed Central  Google Scholar 

  24. Khatamianfar V, Valiyeva F, Rennie PS, Lu W-y, Yang BB, Bauman GS, et al. TRIM59, a novel multiple cancer biomarker for immunohistochemical detection of tumorigenesis. BMJ Open. 2012;2(5):e001410.

    PubMed  PubMed Central  Google Scholar 

  25. Kimura N, Yamada Y, Takayama Ki, Fujimura T, Takahashi S, Kume H, et al. Androgen-responsive tripartite motif 36 enhances tumor-suppressive effect by regulating apoptosis-related pathway in prostate cancer. Cancer Sci. 2018;109(12):3840–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang C, Wang S, Qin C, Bao M, Cheng G, Liu B, et al. TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways. Cell Death Dis. 2018;9(2):1–13.

    Google Scholar 

  27. Fujimura T, Inoue S, Urano T, Takayama K, Yamada Y, Ikeda K, et al. Increased expression of tripartite motif (TRIM) 47 is a negative prognostic predictor in human prostate cancer. Clin Genitourin Cancer. 2016;14(4):298–303.

    PubMed  Google Scholar 

  28. Kanno Y, Watanabe M, Kimura T, Nonomura K, Tanaka S, Hatakeyama S. TRIM29 as a novel prostate basal cell marker for diagnosis of prostate cancer. Acta Histochem. 2014;116(5):708–12.

    CAS  PubMed  Google Scholar 

  29. Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell. 2016;29(6):846–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2018;68(6):394–424.

    Google Scholar 

  31. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80.

    PubMed  Google Scholar 

  32. Yazdani Z, Rafiei A, Golpour M, Zafari P, Moonesi M, Ghaffari S. IL-35, a double-edged sword in cancer. J Cell Biochem. 2020;121(3):2064–76. https://doi.org/10.1002/jcb.29441.

    Article  CAS  PubMed  Google Scholar 

  33. Han Y, Tan Y, Zhao Y, Zhang Y, He X, Yu L, et al. TRIM23 overexpression is a poor prognostic factor and contributes to carcinogenesis in colorectal cancer. J Cell Mol Med. 2020;24(10):5491–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nasrullah U, Haeussler K, Biyanee A, Wittig I, Pfeilschifter J, Eberhardt W. Identification of TRIM25 as a negative regulator of caspase-2 expression reveals a novel target for sensitizing colon carcinoma cells to intrinsic apoptosis. Cells. 2019;8(12):1622.

    CAS  PubMed Central  Google Scholar 

  35. Fitzgerald S, Espina V, Liotta L, Sheehan KM, O’Grady A, Cummins R, et al. Stromal TRIM28-associated signaling pathway modulation within the colorectal cancer microenvironment. J Transl Med. 2018;16(1):1–11.

    Google Scholar 

  36. Mastropasqua F, Marzano F, Valletti A, Aiello I, Di Tullio G, Morgano A, et al. TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours. Mol Cancer. 2017;16(1):1–16.

    Google Scholar 

  37. Cao H, Fang Y, Liang Q, Wang J, Luo B, Zeng G, et al. TRIM2 is a novel promoter of human colorectal cancer. Scand J Gastroenterol. 2019;54(2):210–8.

    CAS  PubMed  Google Scholar 

  38. Lee HJ. The role of tripartite motif family proteins in TGF-β signaling pathway and cancer. J Cancer Prev. 2018;23(4):162–9.

    PubMed  PubMed Central  Google Scholar 

  39. Liang Q, Tang C, Tang M, Zhang Q, Gao Y, Ge Z. TRIM47 is up-regulated in colorectal cancer, promoting ubiquitination and degradation of SMAD4. J Exp Clin Cancer Res. 2019;38(1):159.

    PubMed  PubMed Central  Google Scholar 

  40. Zheng S, Zhou C, Wang Y, Li H, Sun Y, Shen Z. TRIM6 promotes colorectal cancer cells proliferation and response to thiostrepton by TIS21/FoxM1. J Exp Clin Cancer Res. 2020;39(1):23.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. He T, Cui J, Wu Y, Sun X, Chen N. Knockdown of TRIM66 inhibits cell proliferation, migration and invasion in colorectal cancer through JAK2/STAT3 pathway. Life Sci. 2019;235:116799.

    CAS  PubMed  Google Scholar 

  42. Wang F, Ruan L, Yang J, Zhao Q, Wei W. TRIM14 promotes the migration and invasion of gastric cancer by regulating epithelial-to-mesenchymal transition via activation of AKT signaling regulated by miR-195-5p. Oncol Rep. 2018;40(6):3273–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin Z, Li H, Hong X, Ying G, Lu X, Zhuang L, et al. TRIM14 promotes colorectal cancer cell migration and invasion through the SPHK1/STAT3 pathway. Cancer Cell Int. 2018;18:202.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, et al. TRIM14 promotes noncanonical NF-κB activation by modulating p100/p52 stability via selective autophagy. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2019;7(1):1901261.

    PubMed Central  Google Scholar 

  45. Xie Y, Zhao Y, Shi L, Li W, Chen K, Li M, et al. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J Clin Invest. 2020;130(4):2111–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang H, Yao L, Gong Y, Zhang B. TRIM31 regulates chronic inflammation via NF-κB signal pathway to promote invasion and metastasis in colorectal cancer. Am J Transl Res. 2018;10(4):1247–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Noguchi K, Okumura F, Takahashi N, Kataoka A, Kamiyama T, Todo S, et al. TRIM40 promotes neddylation of IKKγ and is downregulated in gastrointestinal cancers. Carcinogenesis. 2011;32(7):995–1004.

    CAS  PubMed  Google Scholar 

  48. Papadatos-Pastos D, Rabbie R, Ross P, Sarker D. The role of the PI3K pathway in colorectal cancer. Crit Rev Oncol Hematol. 2015;94(1):18–30.

    PubMed  Google Scholar 

  49. Xing L, Tang X, Wu K, Huang X, Yi Y, Huan J. TRIM27 functions as a novel oncogene in non-triple-negative breast cancer by blocking cellular senescence through p21 ubiquitination. Mol Ther - Nucleic Acids. 2020;22:910–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

    PubMed  Google Scholar 

  51. Liu Y, Tao S, Liao L, Li Y, Li H, Li Z, et al. TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway. Nat Commun. 2020;11(1):348.

    PubMed  PubMed Central  Google Scholar 

  52. Lee H-L, Chien Y-C, Chiang W-L, Wang H-L, Hsueh K-C, Chen C-H, et al. Analysis of TRIM21 genetic variants on the clinicopathologic characteristics of patients with hepatocellular carcinoma. Processes. 2021;9(3):495.

    CAS  Google Scholar 

  53. Wang Y, He D, Yang L, Wen B, Dai J, Zhang Q, et al. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis. Biochem Biophys Res Commun. 2015;463(3):458–65.

    CAS  PubMed  Google Scholar 

  54. Liu J, Rao J, Lou X, Zhai J, Ni Z, Wang X. Upregulated TRIM11 exerts its oncogenic effects in hepatocellular carcinoma through inhibition of P53. Cell Physiol Biochem. 2017;44(1):255–66.

    PubMed  Google Scholar 

  55. Dong B, Zhang W. High levels of TRIM14 are associated with poor prognosis in hepatocellular carcinoma. Oncol Res Treat. 2018;41(3):129–34.

    CAS  PubMed  Google Scholar 

  56. Xu M, Hu J, Zhou B, Zhong Y, Lin N, Xu R. TRIM29 prevents hepatocellular carcinoma progression by inhibiting Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin. 2019;51(1):68–77.

    CAS  PubMed  Google Scholar 

  57. Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev. 2016;17(sup3):43–6.

    PubMed  Google Scholar 

  58. Iranshahi N, Zafari P, Yari KH, Alizadeh E. The most common genes involved in epigenetics modifications among Iranian patients with breast cancer: a systematic review. Cell Mol Biol (Noisy-le-grand). 2016;62(12):116–22. https://doi.org/10.14715/cmb/2016.62.12.20.

    Article  CAS  Google Scholar 

  59. Győrffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L. Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res. 2015;17(1):1–7.

    Google Scholar 

  60. Kawabata H, Azuma K, Ikeda K, Sugitani I, Kinowaki K, Fujii T, et al. TRIM44 is a poor prognostic factor for breast cancer patients as a modulator of NF-κB signaling. Int J Mol Sci. 2017;18(9):1931.

    PubMed Central  Google Scholar 

  61. Zhou W, Zhang Y, Zhong C, Hu J, Hu H, Zhou D, et al. Decreased expression of TRIM21 indicates unfavorable outcome and promotes cell growth in breast cancer. Cancer Manag Res. 2018;10:3687.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tan P, Ye Y, He L, Xie J, Jing J, Ma G, et al. TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biol. 2018;16(11):e3000051.

    PubMed  PubMed Central  Google Scholar 

  63. Xu Y, Zhang Z, Xu G. TRIM proteins in neuroblastoma. Biosci Rep. 2019;39(12):BSR20192050.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zoumpoulidou G, Broceño C, Li H, Bird D, Thomas G, Mittnacht S. Role of the tripartite motif protein 27 in cancer development. J Natl Cancer Inst. 2012;104(12):941–52. https://doi.org/10.1093/jnci/djs224.

    Article  CAS  PubMed  Google Scholar 

  65. Feng S, Cai X, Li Y, Jian X, Zhang L, Li B. Tripartite motif-containing 14 (TRIM14) promotes epithelial-mesenchymal transition via ZEB2 in glioblastoma cells. J Exp Clin Cancer Res. 2019;38(1):1–13.

    Google Scholar 

  66. Nestler U, Lutz K, Pichlmeier U, Stummer W, Franz K, Reulen H, et al. Anatomic features of glioblastoma and their potential impact on survival. Acta Neurochir. 2015;157(2):179–86.

    CAS  PubMed  Google Scholar 

  67. Ji J, Ding K, Luo T, Zhang X, Chen A, Zhang D, et al. TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα. Cell Death Differ. 2021;28(1):367–81.

    CAS  PubMed  Google Scholar 

  68. Chen G, Kong J, Tucker-Burden C, Anand M, Rong Y, Rahman F, et al. Human Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma. Can Res. 2014;74(16):4536–48.

    CAS  Google Scholar 

  69. Wei H, Ding C, Zhuang H, Hu W. TRIM47 promotes the development of glioma by ubiquitination and degradation of FOXO1. Onco Targets Ther. 2020;13:13401.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang C, Mukherjee S, Tucker-Burden C, Ross JL, Chau MJ, Kong J, et al. TRIM 8 regulates stemness in glioblastoma through PIAS 3-STAT 3. Mol Oncol. 2017;11(3):280–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Qi ZX, Cai JJ, Chen LC, Yue Q, Gong Y, Yao Y, et al. TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol. 2016;126(1):19–26.

    CAS  PubMed  Google Scholar 

  72. Tang S-L, Gao Y-L, Wen-Zhong H. Knockdown of TRIM37 suppresses the proliferation, migration and invasion of glioma cells through the inactivation of PI3K/Akt signaling pathway. Biomed Pharmacother. 2018;99:59–64.

    CAS  PubMed  Google Scholar 

  73. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    CAS  PubMed  Google Scholar 

  74. Quintás-Cardama A, Zhang N, Qiu YH, Post S, Creighton CJ, Cortes J, et al. Loss of TRIM62 expression is an independent adverse prognostic factor in acute myeloid leukemia. Clin Lymphoma Myeloma Leukemia. 2015;15(2):115–27.

    Google Scholar 

  75. Nathan B, Knut N, David T, Caroline B, Noelle P-L, Anthoney LC, et al. The Zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis. PLoS Biol. 2004. https://doi.org/10.1371/journal.pbio.0020237.

    Article  Google Scholar 

  76. Aucagne R, Droin N, Paggetti J, Lagrange B, Largeot A, Hammann A, et al. Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Investig. 2011;121(6):2361–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li F, Hu L, Xu Y, Li Z, Yi S, Gu Z, et al. Identification of characteristic and prognostic values of chromosome 1p abnormality by multi-gene fluorescence in situ hybridization in multiple myeloma. Leukemia. 2016;30(5):1197–201.

    CAS  PubMed  Google Scholar 

  78. Herquel B, Ouararhni K, Davidson I. The TIF1α-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression. Transcription. 2011;2(5):231–6.

    PubMed  PubMed Central  Google Scholar 

  79. Gandini D, De Angeli C, Aguiari G, Manzati E, Lanza F, Pandolfi P, et al. Preferential expression of the transcription coactivator HTIF1 α gene in acute myeloid leukemia and MDS-related AML. Leukemia. 2002;16(5):886–93.

    CAS  PubMed  Google Scholar 

  80. Kapanadze B, Makeeva N, Corcoran M, Jareborg N, Hammarsund M, Baranova A, et al. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14. Genomics. 2000;70(3):327–34.

    CAS  PubMed  Google Scholar 

  81. Baranova A, Hammarsund M, Ivanov D, Skoblov M, Sangfelt O, Corcoran M, et al. Distinct organization of the candidate tumor suppressor gene RFP2 in human and mouse: multiple mRNA isoforms in both species-and human-specific antisense transcript RFP2OS. Gene. 2003;321:103–12.

    CAS  PubMed  Google Scholar 

  82. Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, Berger A, et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Can Res. 2010;70(5):1970–80.

    CAS  Google Scholar 

  83. Zhang P-P, Ding D-Z, Shi B, Zhang S-Q, Gu L-L, Wang Y-C, et al. Expression of TRIM28 correlates with proliferation and Bortezomib-induced apoptosis in B-cell non-Hodgkin lymphoma. Leuk Lymphoma. 2018;59(11):2639–49.

    CAS  PubMed  Google Scholar 

  84. Moustakim M, Clark PG, Hay DA, Dixon DJ, Brennan PE. Chemical probes and inhibitors of bromodomains outside the BET family. MedChemComm. 2016;7(12):2246–64.

    CAS  PubMed  Google Scholar 

  85. Bennett J, Fedorov O, Tallant C, Monteiro O, Meier J, Gamble V, et al. Discovery of a Chemical Tool Inhibitor Targeting the Bromodomains of TRIM24 and BRPF. J Med Chem. 2016;59(4):1642–7.

    CAS  PubMed  Google Scholar 

  86. Li YJ, Zhang GP, Zhao F, Li RQ, Liu SJ, Zhao ZR, et al. Target therapy of TRIM-14 inhibits osteosarcoma aggressiveness through the nuclear factor-κB signaling pathway. Exp Ther Med. 2018;15(3):2365–73.

    CAS  PubMed  Google Scholar 

  87. Yu GH, Li AM, Li X, Yang Z, Peng H. Bispecific antibody suppresses osteosarcoma aggressiveness through regulation of NF-κB signaling pathway. Tumour Biol. 2017;39(6):1010428317705572.

    PubMed  Google Scholar 

  88. Zhan W, Zhang S. TRIM proteins in lung cancer: mechanisms, biomarkers and therapeutic targets. Life Sci. 2021. https://doi.org/10.1016/j.lfs.2020.118985.

    Article  PubMed  Google Scholar 

  89. Chen Z, Chen S-J. RARA and PML genes in acute promyelocytic leukemia. Leuk Lymphoma. 1992;8(4–5):253–60.

    CAS  PubMed  Google Scholar 

  90. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453(7198):1072–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Belloni E, Trubia M, Gasparini P, Micucci C, Tapinassi C, Confalonieri S, et al. 8p11 myeloproliferative syndrome with a novel t (7; 8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosom Cancer. 2005;42(3):320–5.

    CAS  PubMed  Google Scholar 

  92. Kurahashi S, Hayakawa F, Miyata Y, Yasuda T, Minami Y, Tsuzuki S, et al. PAX5–PML acts as a dual dominant-negative form of both PAX5 and PML. Oncogene. 2011;30(15):1822–30.

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

AM and FE contributed to the idea design and literature search. SeK wrote parts of the manuscript. AM contributed to designing the figures. ZM contributed in language editing and writing of manuscript. MP and SaK performed the revision.

Corresponding author

Correspondence to F. Ebrahimzadeh.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interests.

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Pour Abbasi, M.S., Khorrami, S. et al. The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 24, 460–470 (2022). https://doi.org/10.1007/s12094-021-02715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02715-5

Keywords

Navigation