Skip to main content

Advertisement

Log in

Antibody–drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

An antibody–drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC–HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dasgupta P, Henshaw C, Youlden DR, Clark PJ, Aitken JF, Baade PD. Global trends in incidence rates of primary adult liver cancers: a systematic review and meta-analysis. Front Oncol. 2020;28(10):171. https://doi.org/10.3389/fonc.2020.00171.

    Article  Google Scholar 

  2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–14. https://doi.org/10.1016/S0140-6736(18)30010-2.

    Article  PubMed  Google Scholar 

  3. World Health Organization.International Agency for Research on Cancer. 2021.https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. Accessed Mar 2021.

  4. Buonaguro L, Mauriello A, Cavalluzzo B, Petrizzo A, Tagliamonte M. Immunotherapy in hepatocellular carcinoma. Ann Hepatol. 2019;18(2):291–7. https://doi.org/10.1016/j.aohep.2019.04.003.

    Article  CAS  PubMed  Google Scholar 

  5. Wang SZ, Lee SD, Sarkar D, Lee HM, Khan A, Bhati C, et al. Immunological characterization of hepatocellular carcinoma. Hepatoma Res. 2021;7:6. https://doi.org/10.20517/2394-5079.2020.113.

    Article  CAS  Google Scholar 

  6. Nishida N, Kudo M. Oncogenic signal and tumour microenvironment in hepatocellular carcinoma. Oncology. 2017;93(Suppl. 1):160–4. https://doi.org/10.1159/000481246.

    Article  PubMed  Google Scholar 

  7. Nishida N, Kudo M. Immunological microenvironment of hepatocellular carcinoma and its clinical implication. Oncology. 2017;92(Suppl. 1):40–9. https://doi.org/10.1159/000451015.

    Article  PubMed  Google Scholar 

  8. Sachdeva M, Chawla YK, Arora SK. Immunology of hepatocellular carcinoma. World J Hepatol. 2015;7(17):2080. https://doi.org/10.4254/wjh.v7.i17.2080.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Feun LG, Li YY, Wangpaichitr M, Wu CJ, Savaraj N. Immunotherapy for hepatocellular carcinoma: the force awakens in HCC? Hepatoma Res. 2017;3:43–51. https://doi.org/10.20517/2394-5079.2016.45.

    Article  CAS  Google Scholar 

  10. Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF. The yin and yang of evasion and immune activation in HCC. J Hepatol. 2015;62(6):1420–9. https://doi.org/10.1016/j.jhep.2015.02.038.

    Article  CAS  PubMed  Google Scholar 

  11. Chaoul N, Mancarella S, Lupo L, Giannelli G, Dituri F. Impaired anti-tumor T cell response in hepatocellular carcinoma. Cancers. 2020;12(3):627. https://doi.org/10.3390/cancers12030627.

    Article  CAS  PubMed Central  Google Scholar 

  12. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer cell. 2006;10(2):99–111. https://doi.org/10.1016/j.ccr.2006.06.016.

    Article  CAS  PubMed  Google Scholar 

  13. Calderaro J, Rousseau B, Amaddeo G, Mercey M, Charpy C, Costentin C, et al. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology. 2016;64(6):2038–46. https://doi.org/10.1002/hep.28710.

    Article  CAS  PubMed  Google Scholar 

  14. Parayath N, Padmakumar S, Nair SV, Menon D, Amiji MM. Strategies for targeting cancer immunotherapy through modulation of the tumour microenvironment. Regen Eng Transl Med. 2020;6(1):29–49. https://doi.org/10.1007/s40883-019-00113-6.

    Article  Google Scholar 

  15. Greten TF, Lai CW, Li G, Staveley-O’Carroll KF. Targeted and immune-based therapies for hepatocellular carcinoma. Gastroenterology. 2019;156(2):510–24. https://doi.org/10.1053/j.gastro.2018.09.051.

    Article  PubMed  Google Scholar 

  16. Pinter M, Scheiner B, Peck-Radosavljevic M. Immunotherapy for advanced hepatocellular carcinoma: a focus on special subgroups. Gut. 2021;70(1):204–14. https://doi.org/10.1136/gutjnl-2020-321702.

    Article  CAS  PubMed  Google Scholar 

  17. Lu LC, Hsu CH, Hsu C, Cheng AL. Tumor heterogeneity in hepatocellular carcinoma: facing the challenges. Liver cancer. 2016;5(2):128–38. https://doi.org/10.1159/000367754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dahlgren D, Lennernäs H. Antibody-drug conjugates and targeted treatment strategies for hepatocellular carcinoma: a drug-delivery perspective. Molecules. 2020;25(12):2861. https://doi.org/10.3390/molecules25122861.

    Article  CAS  PubMed Central  Google Scholar 

  19. Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1. https://doi.org/10.4103/jcar.JCar_9_16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumari R, Sahu MK, Tripathy A, Uthansingh K, Behera M. Hepatocellular carcinoma treatment: hurdles, advances, and prospects. Hepat Oncol. 2018;5(2):HEP08. https://doi.org/10.2217/hep-2018-0002.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer. 2020;2(1):zcaa002. https://doi.org/10.1093/narcan/zcaa002.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19. https://doi.org/10.1158/1541-7786.

    Article  CAS  PubMed  Google Scholar 

  23. Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4): e00225. https://doi.org/10.1042/BSR20150089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Amico L, Menzel U, Prummer M, Müller P, Buchi M, Kashyap A, et al. A novel anti-HER2 anthracycline-based antibody-drug conjugate induces adaptive anti-tumour immunity and potentiates PD-1 blockade in breast cancer. J Immunother Cancer. 2019;7(1):1–5. https://doi.org/10.1186/s40425-018-0464-1.

    Article  Google Scholar 

  25. Gerber HP, Koehn FE, Abraham RT. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep. 2013;30(5):625–39. https://doi.org/10.1039/c3np20113a.

    Article  CAS  PubMed  Google Scholar 

  26. Chari RV, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl. 2014;53(15):3796–827. https://doi.org/10.1002/anie.201307628.

    Article  CAS  PubMed  Google Scholar 

  27. Lambert JM, Morris CQ. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumours: a review. Adv Ther. 2017;34(5):1015–35. https://doi.org/10.1007/s12325-017-0519-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siracusano G, Tagliamonte M, Buonaguro L, Lopalco L. Cell Surface proteins in hepatocellular carcinoma: from bench to bedside. Vaccines. 2020;8(1):41. https://doi.org/10.3390/vaccines8010041.

    Article  CAS  PubMed Central  Google Scholar 

  29. Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 2017;3:1041–7. https://doi.org/10.3892/ol.2017.5557.

    Article  CAS  Google Scholar 

  30. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79. https://doi.org/10.1016/j.ejpb.2015.03.018.

    Article  CAS  PubMed  Google Scholar 

  31. Schrama D, Reisfeld R, Becker J. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov. 2006;5(2):147–59. https://doi.org/10.1038/nrd1957.

    Article  CAS  PubMed  Google Scholar 

  32. Richardson DL, et al. Antibody drug conjugates in the treatment of epithelial ovarian cancer. Hematol Oncol Clin North Am. 2018;32(6):1057–71. https://doi.org/10.1016/j.hoc.2018.07.014.

    Article  PubMed  Google Scholar 

  33. Nejadmoghaddam M-R, et al. Antibody-drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol. 2019;201911(1):3–23 (PMID: 30800238).

    Google Scholar 

  34. Nasiri H, et al. Antibody-drug conjugates: promising and efficient tools for targeted cancer therapy. J Cell Physiol. 2018;233(9):6441–57. https://doi.org/10.1002/jcp.26435.

    Article  CAS  PubMed  Google Scholar 

  35. Schroeder B, McNiven MA. Importance of endocytic pathways in liver function and disease. Compr Physiol. 2014;4(4):1403–17. https://doi.org/10.1002/cphy.c140001.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang H, Liu Y, Yu Z, Sun M, Lin L, Liu W, et al. The analysis of key factors related to adcs structural design. Front Pharmacol. 2019;24(10):373. https://doi.org/10.3389/fphar.2019.00373.

    Article  CAS  Google Scholar 

  37. Kim EG, Kim KM. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutic. Biomol Ther. 2015;23(6):493–509. https://doi.org/10.4062/biomolther.2015.116.

    Article  CAS  Google Scholar 

  38. Chen X, Ding G, Gao Q, Sun J, Zhang Q, Du L, et al. A human anti-c-Met Fab fragment conjugated with doxorubicin as targeted chemotherapy for hepatocellularcarcinoma. PLoS One. 2013;8(5):e63093. https://doi.org/10.1371/journal.pone.0063093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, et al. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br JCancer. 2008;99(1):100–9. https://doi.org/10.1038/sj.bjc.6604437.

    Article  CAS  Google Scholar 

  40. Sun F, Wang Y, Luo X, Ma Z, Xu Y, Zhang X, et al. Anti-CD24 antibody–nitric oxide conjugate selectively and potently suppresses hepatic carcinoma. Cancer Res. 2019;79(13):3395–405. https://doi.org/10.1158/0008-5472.

    Article  PubMed  Google Scholar 

  41. Ma Z, He H, Sun F, Xu Y, Huang X, Ma Y, et al. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo. J Cancer Res Clin Oncol. 2017;143(10):1929–40. https://doi.org/10.1007/s00432-017-2436-0.

    Article  CAS  PubMed  Google Scholar 

  42. Carter PJ, Senter PD. Antibody-drug conjugates for cancer therapy. Cancer J. 2008;14(3):154–69. https://doi.org/10.1097/PPO.0b013e318172d704.

    Article  CAS  PubMed  Google Scholar 

  43. Rüker F, Wozniak-Knopp G, editors. Introduction to Antibody Engineering. Springer Nature; 2021.

  44. Ma Y, Zhang M, Wang J, Huang X, Kuai X, Zhu X, et al. High-affinity human anti-c-Met IgG conjugated to oxaliplatin as targeted chemotherapy for hepatocellular carcinoma. Front Oncol. 2019;2(9):717. https://doi.org/10.3389/fonc.2019.00717.

    Article  Google Scholar 

  45. Ribas A. Clinical development of the anti–CTLA-4 antibody tremelimumab. Semin Oncol. 2010;37(5):450–4. https://doi.org/10.1053/j.seminoncol.

    Article  CAS  PubMed  Google Scholar 

  46. Shimizu Y, Suzuki T, Yoshikawa T, Tsuchiya N, Sawada Y, Endo I, et al. Cancer immunotherapy-targeted glypican-3 or neoantigens. Cancer Sci. 2018;109(3):531–41. https://doi.org/10.1111/cas.13485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol. 2008;20(4):460–70. https://doi.org/10.1016/j.coi.2008.06.012.

    Article  CAS  PubMed  Google Scholar 

  48. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33. https://doi.org/10.1111/j.1476-5381.2009.00190.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang P, Shi B, Gao H, Jiang H, Kong J, Yan J, et al. An EpCAM/CD3 bispecific antibody efficiently eliminates hepatocellular carcinoma cells with limited galectin-1 expression. Cancer Immunol Immunother. 2014;63(2):121–32. https://doi.org/10.1007/s00262-013-1497-4.

    Article  CAS  PubMed  Google Scholar 

  50. Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy: a review. Pharmacol Ther. 2018;1(185):122–34. https://doi.org/10.1016/j.pharmthera.2017.12.002.

    Article  CAS  Google Scholar 

  51. Lu J, Jiang F, Lu A, Zhang G. Linkers having a crucial role in antibody-drug conjugates. Int J Mol Sci. 2016;17(4):561. https://doi.org/10.3390/ijms17040561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trail PA, Dubowchik GM, Lowinger TB. Antibody-drug conjugates for the treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018;181:126–42. https://doi.org/10.1016/j.pharmthera.2017.07.013.

    Article  CAS  PubMed  Google Scholar 

  53. Beaumont M, Tomazela D, Hodges D, Ermakov G, Hsieh E, Figueroa I, et al. Antibody-drug conjugates: integrated bioanalytical and disposition assessments in lead optimization and selection. AAPS Open. 2018;4(1):1–7. https://doi.org/10.1186/s41120-018-0026-0.

    Article  Google Scholar 

  54. Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111(6):538–49. https://doi.org/10.1093/jnci/djz035.

    Article  CAS  PubMed  Google Scholar 

  55. Gupta N, Kancharla J, Kaushik S, Ansari A, Hossain S, Goyal R, et al. Development of a facile antibody-drug conjugate platform for increased stability and homogeneity. Chem Sci. 2018;8(3):2387–95. https://doi.org/10.1039/c6sc05149a (Epub 2016 Dec 9).

    Article  Google Scholar 

  56. Kern JC, Cancilla M, Dooney D, Kwasnjuk K, Zhang R, Beaumont M, et al. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J Am Chem Soc. 2016;138(4):1430–45. https://doi.org/10.1021/jacs.5b12547.

    Article  CAS  PubMed  Google Scholar 

  57. Rossi C, Chrétien ML, Casasnovas RO. Antibody-drug conjugates for the treatment of hematological malignancies: a comprehensive review. Target Oncol. 2018;13(3):287–308. https://doi.org/10.1007/s11523-018-0558-1.

    Article  PubMed  Google Scholar 

  58. Staudacher AH, Brown MP. Antibody-drug conjugates and bystander killing: is antigen-dependent internalization required? Br J Cancer. 2017;117(12):1736–42. https://doi.org/10.1038/bjc.2017.367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Walles M, Connor A, Hainzl D. ADME and safety aspects of non-cleavable linkers in drug discovery and development. Curr Top Med Chem. 2017;17(32):3463–75. https://doi.org/10.2174/1568026618666180118153502.

    Article  CAS  PubMed  Google Scholar 

  60. Pankowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody-drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45. https://doi.org/10.4161/mabs.27022.

    Article  Google Scholar 

  61. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37. https://doi.org/10.1038/nrd.2016.268.

    Article  CAS  PubMed  Google Scholar 

  62. Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, et al. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals. 2018;11(2):32. https://doi.org/10.3390/ph11020032.

    Article  CAS  PubMed Central  Google Scholar 

  63. Verma VA, Pillow TH, DePalatis L, Li G, Phillips GL, Polson AG, et al. The cryptophycins as potent payloads for antibody-drug conjugates. Bioorg Med Chem Lett. 2015;25(4):864–8. https://doi.org/10.1016/j.bmcl.2014.12.070.

    Article  CAS  PubMed  Google Scholar 

  64. Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, et al. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020;235(1):31–64. https://doi.org/10.1002/jcp.28967.

    Article  CAS  PubMed  Google Scholar 

  65. Calo CA, O’Malley DM. Antibody-drug conjugates for the treatment of ovarian cancer. Expert Opin Biol Ther. 2020;7:1–3. https://doi.org/10.1080/14712598.2020.1776253.

    Article  CAS  Google Scholar 

  66. Masters JC, Nickens DJ, Xuan D, Shazer RL, Amantea M. Clinical toxicity of antibody-drug conjugates: a meta-analysis of payloads. Invest New Drugs. 2018;36(1):121–35. https://doi.org/10.1007/s10637-017-0520-6.

    Article  CAS  PubMed  Google Scholar 

  67. Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem. 2018;14(1):1051–86. https://doi.org/10.3762/bjoc.14.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Toader D. Antibody-Drug Conjugates. In: Waring MJ, editor. Cancer II. Topics in medicinal chemistry. Cham: Springer; 2017. p. 289. https://doi.org/10.1007/7355_2017_29.

    Chapter  Google Scholar 

  69. Donaghy H. Effects of antibody, drug, and linker on the preclinical and clinical toxicities of antibody-drugconjugates. MAbs. 2016;8(4):659–71. https://doi.org/10.1080/19420862.2016.1156829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dokter W, Ubink R, van der Lee M, van der Vleuten M, van Achterberg T, Jacobs D, et al. Preclinical profile of the HER2-targeting ADC SYD983/SYD985: introduction of a new duocarmycin-based linker-drug platform. Mol Cancer Ther. 2014;13(11):2618–29. https://doi.org/10.1158/1535-7163.MCT-14-0040-T.

    Article  CAS  PubMed  Google Scholar 

  71. Govindan SV, Sharkey RM, Goldenberg DM. Prospects and progress of antibody-drug conjugates in solid tumor. Expert Opin Biol Ther. 2016;16(7):883–93. https://doi.org/10.1517/14712598.2016.1173203.

    Article  CAS  PubMed  Google Scholar 

  72. Fu Y, Urban DJ, Nani RR, Zhang YF, Li N, Fu H, et al. Glypican-3-specific antibody drug conjugates targeting hepatocellular carcinoma. Hepatology. 2019;70(2):563–76. https://doi.org/10.1002/hep.30326 (Epub 2019 Feb 19).

    Article  CAS  PubMed  Google Scholar 

  73. Rios-Doria J, Harper J, Rothstein R, Wetzel L, Chesebrough J, Marrero A, et al. Antibody-drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies. Cancer Res. 2017;77(10):2686–98. https://doi.org/10.1158/0008-5472.CAN-16-2854.

    Article  CAS  PubMed  Google Scholar 

  74. Pearce MC, Gamble JT, Kopparapu PR, O’Donnell EF, Mueller MJ, Jang HS, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9(40):26072. https://doi.org/10.18632/oncotarget.25437.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang J, Wu Z, Pan G, Ni J, Xie F, Jiang B, et al. Enhanced doxorubicin delivery to hepatocellular carcinoma cells via CD147 antibody-conjugated immunoliposomes. Nanomedicine. 2018;14(6):1949–61. https://doi.org/10.1016/j.nano.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  76. Dosio F, Brusa P, Cattel L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins. 2011;3(7):848–83. https://doi.org/10.3390/toxins3070848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cvitkovic E, Bekradda M. Oxaliplatin: a new therapeutic option in colorectal cancer. Semin Oncol. 1999;26(6):647–62 (PMID: 10606258).

    CAS  PubMed  Google Scholar 

  78. Jiang T, Zhang H, Liu X, Song H, Yao R, Li J, et al. Effect of oxaliplatin combined with polyenephosphatidylcholine on the proliferation of human gastric cancer SGC-7901 cells. Oncol Lett. 2016;12(6):4538–46. https://doi.org/10.3892/ol.2016.5293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cassidy J, Misset JL. Oxaliplatin-related side effects: characteristics and management. Semin Oncol. 2002;29(5):11–20. https://doi.org/10.1053/sonc.2002.35524.

    Article  CAS  PubMed  Google Scholar 

  80. Hickok JR, Thomas DD. Nitric oxide and cancer therapy: the emperor has NO clothes. Curr Pharm Des. 2010;16(4):381–91. https://doi.org/10.2174/138161210790232149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yasuda H, Yanagihara K, Nakayama K, Mio T, Sasaki T, Asada M et al. Therapeutic applications of nitric oxide for malignant tumor in animal models and human studies. InNitric Oxide (NO) and Cancer. 2010

  82. Chen H, Lin Z, Arnst KE, Miller DD, Li W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules. 2017;22(8):1281. https://doi.org/10.3390/molecules22081281.

    Article  CAS  PubMed Central  Google Scholar 

  83. Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer. Lancet. 2019;394(10200):793–804. https://doi.org/10.1016/S0140-6736(19)31774-X.

    Article  CAS  PubMed  Google Scholar 

  84. Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17(6):e254–62. https://doi.org/10.1016/S1470-2045(16)30030-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lopus M, Oroudjev E, Wilson L, Wilhelm S, Widdison W, Chari R, et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther. 2010;9(10):2689–99. https://doi.org/10.1158/1535-7163.MCT-10-0644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baron JM, Boster BL, Barnett CM. Ado-trastuzumabemtansine (T-DM1): a novel antibody-drug conjugate for the treatment of HER2-positive metastatic breast cancer. J Oncol Pharm Pract. 2015;21(2):132–42. https://doi.org/10.1177/1078155214527144.

    Article  CAS  PubMed  Google Scholar 

  87. Trnĕný M, Verhoef G, Dyer MJ, Yehuda DB, Patti C, Canales M, et al. A phase II multicenter study of the anti-CD19 antibody-drug conjugate cetuximabravtansine (SAR3419) in patients with relapsed or refractory diffuse large B-cell lymphoma previously treated with rituximab-based immunotherapy. Haematologica. 2018;103(8):1351. https://doi.org/10.3324/haematol.2017.168401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buecheler JW, Winzer M, Tonillo J, Weber C, Gieseler H. Impact of payload hydrophobicity on the stability of antibody-drug conjugates. Mol Pharm. 2018;15(7):2656–64. https://doi.org/10.1021/acs.molpharmaceut.8b00177.

    Article  CAS  PubMed  Google Scholar 

  89. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925. https://doi.org/10.1038/nbt.1480.

    Article  CAS  PubMed  Google Scholar 

  90. Chudasama V, Maruani A, Caddick S. Recent advances in the construction of antibody-drug conjugates. Nat Chem. 2016;8(2):114. https://doi.org/10.1038/nchem.2415.

    Article  CAS  PubMed  Google Scholar 

  91. Akkapeddi P, Azizi SA, Freedy AM, Cal PM, Gois PM, Bernardes GJ. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem Sci. 2016;7(5):2954–63. https://doi.org/10.1039/c6sc00170j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pysz I, Jackson PJM, Thurston DE. CHAPTER 1: introduction to antibody-drug conjugates (ADCs). In: Cytotoxic Payloads for antibody-drug conjugates. Cambridge: Royal Society of chemistry; 2019. p. 1–30. https://doi.org/10.1039/9781788012898-00001.

    Chapter  Google Scholar 

  93. Cao M, De Mel N, Jiao Y, Howard J, Parthemore C, Korman S, et al. Site-specific antibody-drug conjugate heterogeneity characterization and heterogeneity root cause analysis. MAbs. 2019;11(6):1064–76. https://doi.org/10.1080/19420862.2019.1624127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Coumans RG, Ariaans GJ, Spijker HJ, RenartVerkerk P, Beusker PH, Kokke BP, et al. A Platform for the generation of site-specific antibody-drug conjugates that allows for selective reduction of engineered cysteines. Bioconjugate Chem. 2020;31(9):2136–46. https://doi.org/10.1021/acs.bioconjchem.0c00337.

    Article  CAS  Google Scholar 

  95. Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46. https://doi.org/10.1007/s13238-016-0323-0.

    Article  CAS  PubMed  Google Scholar 

  96. Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, et al. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev. 2021;50:1305–53. https://doi.org/10.1039/D0CS00310G.

    Article  CAS  PubMed  Google Scholar 

  97. García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol. 2018;24(33):3695. https://doi.org/10.3748/wjg.v24.i33.3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang H, Rao B, Lou J, Li J, Liu Z, Li A, et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front Cell Dev Biol. 2020;7(8):55. https://doi.org/10.3389/fcell.2020.00055.

    Article  Google Scholar 

  99. Petrini I. Biology of MET: a double life between normal tissue repair and tumor progression. Ann Transl Med. 2015;3(6):82. https://doi.org/10.3978/j.issn.2305-5839.2015.03.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang M, Huang CZ. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol. 2015;21(41):11673. https://doi.org/10.3748/wjg.v21.i41.11673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oku Y, Shimoji T, Takifuji K, Hotta T, Yokoyama S, Matsuda K, et al. Identification of the molecular mechanisms for dedifferentiation at the invasion front of colorectal cancer by a gene expression analysis. Clin Cancer Res. 2008;14(22):7215–22. https://doi.org/10.1158/1078-0432.CCR-08-0370.

    Article  CAS  PubMed  Google Scholar 

  102. Venepalli NK, Goff L. Targeting the HGF-cMET axis in hepatocellular carcinoma. Int J Hepatol. 2013;2013:1–11. https://doi.org/10.1155/2013/341636.

    Article  Google Scholar 

  103. Papaccio F, Della Corte CM, Viscardi G, Di Liello R, Esposito G, Sparano F, et al. HGF/MET, and the immune system: relevance for cancer immunotherapy. Int J Mol Sci. 2018;19(11):3595. https://doi.org/10.3390/ijms19113595.

    Article  CAS  PubMed Central  Google Scholar 

  104. Lencioni R, Petruzzi P, Crocetti L. Chemoembolization of hepatocellular carcinoma. Semin Intervent Radiol. 2013;30(1):3–11. https://doi.org/10.1055/s-0033-1333648.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fiume L, Bolondi L, Busi C, Chieco P, Kratz F, Lanza M, et al. Doxorubicin coupled to lactosaminated albumin inhibits the growth of hepatocellular carcinomas induced in rats by diethylnitrosamine. J Hepatol. 2005;43(4):645–52. https://doi.org/10.1016/j.jhep.2005.02.045.

    Article  CAS  PubMed  Google Scholar 

  106. Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release. 2002;82(1):17–27.

    Article  CAS  Google Scholar 

  107. Johnson-Arbor K, Dubey R. Doxorubicin, In: StatPearls, Treasure Island: StatPearls Publishing; 2021. PMID: 29083582

  108. Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol. 2016;3(1):57–9. https://doi.org/10.1016/s0168-3659(02)00088-3.

    Article  PubMed  Google Scholar 

  109. Kalim M, Chen J, Wang S, Lin C, Ullah S, Liang K, et al. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. Drug Des Devel Ther. 2017;11:2265. https://doi.org/10.2147/DDDT.S135571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1–30. https://doi.org/10.1186/s12929-019-0592-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fu XT, Song K, Zhou J, Shi YH, Liu WR, Shi GM, et al. Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma. Cancer Cell Int. 2019;19(1):1–1. https://doi.org/10.1186/s12935-019-0771-8.

    Article  Google Scholar 

  112. Salomon PL, Reid EE, Archer KE, Harris L, Maloney EK, Wilhelm AJ, et al. Optimizing lysosomal activation of antibody-drug conjugates (ADCs) by incorporation of novel cleavable dipeptide linkers. Mol Pharm. 2019;16(12):4817–25. https://doi.org/10.1021/acs.molpharmaceut.9b00696.

    Article  CAS  PubMed  Google Scholar 

  113. Qin S, Wu Q. Systemic chemotherapy with oxaliplatin is a good option for advanced hepatocellular carcinoma. Hepat Oncol. 2015;2(3):203–7. https://doi.org/10.2217/hep.15.14.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Li L, Chen J, Ge C, Zhao F, Chen T, Tian H, et al. CD24 isoform promotes cell proliferation, migration, and invasion and is downregulated by EGR1 in hepatocellular carcinoma. Onco Targets Ther. 2019;12:1705. https://doi.org/10.2147/OTT.S196506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen Z, Wang T, Tu X, Xie W, He H, Wang M, et al. Antibody-based targeting of CD24 enhances the antitumor effect of cetuximab via attenuating phosphorylation of Src/STAT3. Biomed Pharmacother. 2017;1(90):427–36. https://doi.org/10.1016/j.biopha.2017.03.094.

    Article  CAS  Google Scholar 

  116. Ryu J, Kang M, Lee MS, Kim HJ, Nam SH, Song HE, et al. Cross talk between the TM4SF5/focal adhesion kinase and the interleukin-6/STAT3 pathways promotes immune escape of human liver cancer cells. Mol Cell Biol. 2014;34(16):2946–60. https://doi.org/10.1128/MCB.00660-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24+ liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9(1):50–63. https://doi.org/10.1016/j.stem.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  118. Yin SS, Gao FH. Molecular mechanism of tumor cell immune escape mediated by CD24/siglec-10. Front Immunol. 2020;17(11):1324. https://doi.org/10.3389/fimmu.2020.01324.

    Article  CAS  Google Scholar 

  119. Chinje EC, Stratford IJ. Role of nitric oxide in the growth of solid tumours: a balancing act. Essays Biochem. 1997;1(32):61–72 (PMID: 9493011).

    Google Scholar 

  120. Yongsanguanchai N, Pongrakhananon V, Mutirangura A, Rojanasakul Y, Chanvorachote P. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am J Physiol Cell Physiol. 2015;308(2):C89-100. https://doi.org/10.1152/ajpcell.00187.2014.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang X, Jin L, Tian Z, Wang J, Yang Y, Liu J, et al. Nitric oxide inhibits autophagy and promotes apoptosis in hepatocellular carcinoma. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398894/ Cancer Sci. 2019;110(3):1054–63. https://doi.org/10.1111/cas.13945.

  122. Weiming XU, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res. 2002;12(5):311–20. https://doi.org/10.1038/sj.cr.7290133.

    Article  Google Scholar 

  123. Salnikov AV, Bretz NP, Perne C, Hazin J, Keller S, Fogel M, et al. Antibody targeting of CD24 efficiently retards growth and influences cytokine milieu in experimental carcinomas. Br J Cancer. 2013;108(7):1449–59. https://doi.org/10.1038/bjc.2013.102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chakravarthi S, Jessop CE, Bulleid NJ. The role of glutathione in disulfide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 2006;7(3):271–5. https://doi.org/10.1038/sj.embor.7400645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ma Z, He H, Sun F, Xu, , et al. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo. J Cancer Res Clin Oncol. 2017;143(10):1929–40. https://doi.org/10.1007/s00432-017-2436-0.

    Article  CAS  PubMed  Google Scholar 

  126. Sun F, Wang T, Jiang J, Wang Y, Ma Z, Li Z, et al. Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design. Oncotarget. 2017;8(31):51238. https://doi.org/10.18632/oncotarget.17228.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Meng J, Sun B, Zhao X, Zhang D, Zhao X, Gu Q, et al. Doxycycline as an inhibitor of the epithelial-to-mesenchymal transition and vasculogenic mimicry in hepatocellular carcinoma. Mol Cancer Ther. 2014;13(12):3107–22. https://doi.org/10.1158/1535-7163.MCT-13-1060.

    Article  CAS  PubMed  Google Scholar 

  128. Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: a new target for diagnosis and treatment of hepatocellular carcinoma. J Cancer. 2020;11(8):2008. https://doi.org/10.7150/jca.39972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chouhan S, Singh S, Athavale D, Ramteke P, Pandey V, Joseph J, et al. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4. Sci Rep. 2016;6(1):1–5. https://doi.org/10.1038/srep27558.

    Article  CAS  Google Scholar 

  130. Chouhan S, Singh S, Athavale D, Ramteke P, Vanuopadath M, Nair BG, et al. Sensitization of hepatocellular carcinoma cells towards doxorubicin and sorafenib is facilitated by glucose-dependent alterations in reactive oxygen species, P-glycoprotein and DKK4. J Biosci. 2020;45(1):1–23 (PMID: 32713860).

    Article  Google Scholar 

  131. Nishida T, Kataoka H. Glypican 3-targeted therapy in hepatocellular carcinoma. Cancers. 2019;11(9):1339. https://doi.org/10.3390/cancers11091339.

    Article  CAS  PubMed Central  Google Scholar 

  132. Wang S, Chen N, Chen Y, Sun L, Li L, et al. Elevated GPC3 level promotes cell proliferation in liver cancer. Oncol Lett. 2018;16(1):970–6. https://doi.org/10.3892/ol.2018.8754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lai JP, Sandhu DS, Yu C, Han T, Moser CD, Jackson KK, et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology. 2008;47(4):1211–22. https://doi.org/10.1002/hep.22202.

    Article  CAS  PubMed  Google Scholar 

  134. Yu M, Luo H, Fan M, Wu X, Shi B, Di S, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther. 2018;26(2):366–78. https://doi.org/10.1016/j.ymthe.2017.12.012.

    Article  CAS  PubMed  Google Scholar 

  135. Park JO, Stephen Z, Sun C, Veiseh O, Kievit FM, Fang C, et al. Glypican-3 targeting of liver cancer cells using multifunctional nanoparticles. Mol imaging. 2011;10(1):69–77 (PMID: 21303616).

    Article  CAS  Google Scholar 

  136. Ortiz MV, Roberts SS, Glade Bender J, Shukla N, Wexler LH. Immunotherapeutic targeting of GPC3 in pediatric solid embryonal tumors. Front Oncol. 2019;26(9):108. https://doi.org/10.3389/fonc.2019.00108.

    Article  Google Scholar 

  137. Ho M, Kim H. Glypican-3: a new target for cancer immunotherapy. Eur J Cancer. 2011;47(3):333–8. https://doi.org/10.1016/j.ejca.2010.10.024.

    Article  CAS  PubMed  Google Scholar 

  138. Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25(18):5441–8. https://doi.org/10.1158/1078-0432.CCR-19-0272.

    Article  CAS  PubMed  Google Scholar 

  139. Li N, Gao W, Zhang YF, Ho M. Glypicans as cancer therapeutic targets. Trends Cancer. 2018;4(11):741–54. https://doi.org/10.1016/j.trecan.2018.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang YF, Ho M. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma. Sci Rep. 2016;6(1):1–1. https://doi.org/10.1038/srep33878.

    Article  CAS  Google Scholar 

  141. Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int. 2018;18(1):1–5. https://doi.org/10.1186/s12935-018-0538-7.

    Article  CAS  Google Scholar 

  142. Patil CP, Satam Lee VM. A short review on the synthetic strategies of duocarmycin analogs that are powerful DNA alkylating agents. Anticancer Agents Med Chem. 2015;15(5):616–30. https://doi.org/10.2174/1871520615666141216144116.

    Article  CAS  PubMed  Google Scholar 

  143. Diamantis N, Banerji U. Antibody-drug conjugates—an emerging class of cancer treatment. Br J Cancer. 2016;114(4):362–7. https://doi.org/10.1038/bjc.2015.435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pillow TH, Tercel M. Duocarmycin–PBD Dimers as Antibody–Drug Conjugate (ADC) Payloads. In: Thurston DE, Jackson PJM, editors. Cytotoxic Payloads for Antibody–Drug Conjugates. Royal Society of Chemistry; 2019. pp. 241–258.

  145. Anami Y, Yamazaki CM, Xiong W, Gui X, Zhang N, An Z, et al. Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat Commun. 2018;9(1):1–9. https://doi.org/10.1038/s41467-018-04982-3.

    Article  CAS  Google Scholar 

  146. Hartley JA. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs. 2011;20(6):733–44. https://doi.org/10.1517/13543784.2011.573477 (Epub 2011 Apr 4).

    Article  CAS  PubMed  Google Scholar 

  147. Marcucci F, Caserta CA, Romeo E, Rumio C. Antibody-drug conjugates (ADC) against cancer stem-like cells (CSC)—is there still room for optimism? Front Oncol. 2019;9:167. https://doi.org/10.3389/fonc.2019.00167.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016;159(5):481–90. https://doi.org/10.1093/jb/mvv127.

    Article  CAS  PubMed  Google Scholar 

  149. Zheng HC, Takahashi H, Murai Y, Cui ZG, Nomoto K, Miwa S, Tsuneyama K, Takano Y. Upregulated EMMPRIN/CD147 might contribute to growth and angiogenesis of gastric carcinoma: a good marker for local invasion and prognosis. Br J Cancer. 2006;95(10):1371–8. https://doi.org/10.1038/sj.bjc.6603425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Heinzmann D, Noethel M, Ungern-Sternberg SV, Mitroulis I, Gawaz M, Chavakis T, et al. CD147 is a novel interaction partner of integrin αMβ2 mediating leukocyte and platelet adhesion. Biomolecules. 2020;10(4):541. https://doi.org/10.3390/biom10040541.

    Article  CAS  PubMed Central  Google Scholar 

  151. Shang YK, Li C, Liu ZK, Kong LM, Wei D, Xu J, et al. System analysis of the regulation of the immune response by CD147 and FOXC1 in cancer cell lines. Oncotarget. 2018;9(16):12918. https://doi.org/10.18632/oncotarget.24161.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kendrick AA, Schafer J, Dzieciatkowska M, Nemkov T, D’Alessandro A, Neelakantan D, et al. CD147: a small molecule transporter ancillary protein at the crossroad of multiple hallmarks of cancer and metabolic reprogramming. Oncotarget. 2017;8(4):6742. https://doi.org/10.18632/oncotarget.14272.

    Article  PubMed  Google Scholar 

  153. Li X, Zhang Y, Ma W, Fu Q, Liu J, Yin G, et al. Enhanced glucose metabolism mediated by CD147 contributes to immunosuppression in hepatocellular carcinoma. Cancer Immunol Immunother. 2020;21:1–4. https://doi.org/10.1007/s00262-019-02457-y.

    Article  CAS  Google Scholar 

  154. Vanherwegen AS, Gysemans C, Overbergh L. Dendritic cell metabolism: immunity and tolerance. Oncotarget. 2015;6(33):34039. https://doi.org/10.18632/oncotarget.5865.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK cell metabolism and tumor microenvironment. Front Immunol. 2019;24(10):2278. https://doi.org/10.3389/fimmu.2019.02278.

    Article  CAS  Google Scholar 

  156. Li J, Huang Q, Long X, Zhang J, Huang X, Aa J, et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways. J Hepatol. 2015;63(6):1378–89. https://doi.org/10.1016/j.jhep.2015.07.039.

    Article  CAS  PubMed  Google Scholar 

  157. Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Method Enzymol. 2005;1(391):71–97. https://doi.org/10.1016/s0076-6879(05)91004-5.

    Article  Google Scholar 

  158. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742 (PMID: 29234213).

    PubMed  PubMed Central  Google Scholar 

  159. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;1(6):286. https://doi.org/10.3389/fphar.2015.00286.

    Article  CAS  Google Scholar 

  160. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):1–4. https://doi.org/10.1186/s40169-018-0198-1.

    Article  Google Scholar 

  161. Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K, et al. CD133 modulate HIF-1α expression under hypoxia in EMT phenotype pancreatic cancer stem-like cells. Int J Mol Sci. 2016;17(7):1025. https://doi.org/10.1186/s40169-018-0198-1.

    Article  PubMed Central  Google Scholar 

  162. Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, et al. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs. 2008;188(1–2):127–38. https://doi.org/10.1159/000112847.

    Article  CAS  PubMed  Google Scholar 

  163. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351(4):820–4. https://doi.org/10.1016/j.bbrc.2006.10.128.

    Article  CAS  PubMed  Google Scholar 

  164. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27(12):1749–58. https://doi.org/10.1038/sj.onc.1210811.

    Article  CAS  PubMed  Google Scholar 

  165. Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, et al. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol. 2018;10:1758835918816287. https://doi.org/10.1177/1758835918816287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dai X, Guo Y, Hu Y, Bao X, Zhu X, Fu Q, et al. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics. 2021;11(7):3489. https://doi.org/10.7150/thno.54648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, et al. Antibody-drug conjugates: the new frontier of chemotherapy. Int J Mol Sci. 2020;21(15):5510. https://doi.org/10.3390/ijms21155510.

    Article  CAS  PubMed Central  Google Scholar 

  168. Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, Abdollahpour-Alitappeh M. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020;235(1):31–64. https://doi.org/10.1002/jcp.28967.

    Article  CAS  PubMed  Google Scholar 

  169. Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol. 2019;11(1):3. https://doi.org/10.1080/19420862.2021.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19. https://doi.org/10.1158/1541-7786.

    Article  CAS  PubMed  Google Scholar 

  171. Lin JH, Guo Y, Wang W. Challenges of antibody drug conjugates in cancer therapy: current understanding of mechanisms and future strategies. Curr Pharmacol Rep. 2018;4(1):10–26. https://doi.org/10.1007/s40495-018-0122-9.

    Article  CAS  Google Scholar 

  172. Leopold LH, Berger MS, Feingoldr J. Acute and long-term toxicities associated with gemtuzumab ozogamicin (mylotarg®) therapy of acute myeloid leukemia. Clin Lymphoma. 2002;1(2):S29-34. https://doi.org/10.3816/CLM.2002.s.006.

    Article  Google Scholar 

  173. Rajvanshi P, Shulman HM, Sievers EL, McDonald GB. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood J Am Soc Hematol. 2002;99(7):2310–4. https://doi.org/10.1182/blood.V99.7.2310.

    Article  CAS  Google Scholar 

  174. Gorovits B, Krinos-Fiorotti C. Proposed mechanism of off-target toxicity for antibody–drug conjugates driven by mannose receptor uptake. Cancer Immunol Immunother. 2013;62(2):217–23. https://doi.org/10.1007/s00262-012-1369-3.

    Article  CAS  PubMed  Google Scholar 

  175. LoRusso PM, Lomen PL, Redman BG, Poplin E, Bander JJ, Valdivieso M. Phase I study of monoclonal antibody-ricin A chain immunoconjugate Xomazyme-791 in patients with metastatic colon cancer. Am J Clin Oncol. 1995;18(4):307–12. https://doi.org/10.1097/00000421-199508000-00008.

    Article  CAS  PubMed  Google Scholar 

  176. Winer LM, O’Dwyer J, Kitson J, Comis RL, Frankel AE, Bauer RJ, Konrad MS, Groves ES. Phase I evaluation of an anti-breast carcinoma monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. Can Res. 1989;49(14):4062–7.

    Google Scholar 

  177. Kim YW, Chang TW. Potential use of immunoconjugates for AIDS therapy. AIDS Res Hum Retroviruses. 1992;8(6):1033–8.

    Article  CAS  Google Scholar 

  178. Skilleter DN, Price RJ, Parnell GD, Cumber AJ. The low uptake of an abrin A-chain immunotoxin by rat hepatic cells in vivo and in vitro. Cancer Lett. 1989;46(3):161–6.

    Article  CAS  Google Scholar 

  179. Mosure KW, Henderson AJ, Klunk LJ, Knipe JO. Disposition of conjugate-bound and free doxorubicin in tumor-bearing mice following administration of a BR96-doxorubicin immunoconjugate (BMS 182248). Cancer Chemother Pharmacol. 1997;40(3):251–8.

    Article  CAS  Google Scholar 

  180. Herbertson RA, Tebbutt NC, Lee FT, MacFarlane DJ, Chappell B, Micallef N, Lee ST, Saunder T, Hopkins W, Smyth FE, Wyld DK. Phase I biodistribution and pharmacokinetic study of Lewis Y–targeting immunoconjugate CMD-193 in patients with advanced epithelial cancers. Clin Cancer Res. 2009;15(21):6709–15.

    Article  CAS  Google Scholar 

  181. Tolcher AW, Ochoa L, Hammond LA, Patnaik A, Edwards T, Takimoto C, Smith L, de Bono J, Schwartz G, Mays T, Jonak ZL. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol. 2003;21(2):211–22.

    Article  CAS  Google Scholar 

  182. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA, Goldmacher VS. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Can Res. 2006;66(6):3214–21.

    Article  CAS  Google Scholar 

  183. Collins DM, Bossenmaier B, Kollmorgen G, Niederfellner G. Acquired resistance to antibody-drug conjugates. Cancers. 2019;11(3):394.

    Article  CAS  Google Scholar 

  184. García-Alonso S, Ocaña A, Pandiella A. Resistance to antibody–drug conjugates. Can Res. 2018;78(9):2159–65.

    Article  Google Scholar 

  185. Walter RB, Gooley TA, Van Der Velden VH, Loken MR, Van Dongen JJ, Flowers DA, Bernstein ID, Appelbaum FR. CD33 expression and P-glycoprotein–mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109(10):4168–70.

    Article  CAS  Google Scholar 

  186. Matsui H, Takeshita A, Naito K, Shinjo K, Shigeno K, Maekawa M, Yamakawa Y, Tanimoto M, Kobayashi M, Ohnishi K, Ohno R. Reduced effect of gemtuzumab ozogamicin (CMA-676) on P-glycoprotein and/or CD34-positive leukemia cells and its restoration by multidrug resistance modifiers. Leukemia. 2002;16(5):813–9.

    Article  CAS  Google Scholar 

  187. Rosen DB, Harrington KH, Cordeiro JA, Leung LY, Putta S, Lacayo N, Laszlo GS, Gudgeon CJ, Hogge DE, Hawtin RE, Cesano A. AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. PLoS One. 2013;8(1):e53518.

    Article  CAS  Google Scholar 

  188. Donato EM, Fernández-Zarzoso M, Hueso JA, de la Rubia J. Brentuximab vedotin in Hodgkin lymphoma and anaplastic large-cell lymphoma: an evidence-based review. Onco Targets Ther. 2018;11:4583.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Amrita VishwaVidyapeetham. We express our sincere gratitude to Dr Shanthikumar. V. Nair, Dean of Research, Amrita Vishwa Vidyapeetham and Dr Sabitha M, Principal, Amrita School of Pharmacy for the encouragement, support and all the facilities provided.

Funding

We acknowledge the support of the Amrita Vishwa Vidyapeetham PG student fellowship to MM. The work is partially supported by Amrita Vishwa Vidyapeetham faculty SEED grant to LRN (K-PHAR-20-627).

Author information

Authors and Affiliations

Authors

Contributions

LRN designed, conceptualized and writing the review. PK revised and proofread the manuscript. MM, ARK and ARD carried out a literature survey and writing. BLN and GP contributed to the artwork.

Corresponding author

Correspondence to L. R. Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Research involving human participants and/or animals

ot applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have given their consent for the publishing of this manuscript.

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, M., Kumar, A.R., Nair, B. et al. Antibody–drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 24, 407–431 (2022). https://doi.org/10.1007/s12094-021-02707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02707-5

Keywords

Navigation