Skip to main content

Advertisement

Log in

Immunotherapy in AML: a brief review on emerging strategies

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient’s immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sweeney C, Vyas P. The graft-versus-leukemia effect in AML. Front Oncol. 2019;9:1217.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, et al. Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci. 2019;20(17):4233.

    Article  CAS  PubMed Central  Google Scholar 

  3. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87.

    Article  PubMed  Google Scholar 

  4. Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–107.

    Article  PubMed  Google Scholar 

  5. Medeiros BC. Is there a standard of care for relapsed AML? Best Pract Res Clin Haematol. 2018;31(4):384–6.

    Article  PubMed  Google Scholar 

  6. Stein EM, Tallman MS. Emerging therapeutic drugs for AML. Blood. 2016;127(1):71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016;35:298–308.

    Article  PubMed  Google Scholar 

  8. Gale RP, Opelz G. Commentary: does immune suppression increase risk of developing acute myeloid leukemia? Leukemia. 2012;26(3):422–3.

    Article  CAS  PubMed  Google Scholar 

  9. Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol. 2020;188(1):147–58.

    Article  PubMed  Google Scholar 

  10. Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 2018;9:398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol. 2016;103:62–77.

    Article  PubMed  Google Scholar 

  12. Yang D, Zhang X, Zhang X, Xu Y. The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol. 2017;96(12):1965–82.

    Article  CAS  PubMed  Google Scholar 

  13. Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood. 1986;68(2):493–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed S, Rai KR. Interferon in the treatment of hairy-cell leukemia. Best Pract Res Clin Haematol. 2003;16(1):69–81.

    Article  CAS  PubMed  Google Scholar 

  15. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abdel-Wahab N, Shah M, Lopez-Olivo MA, Suarez-Almazor ME. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann Intern Med. 2018;168(2):121–30.

    Article  PubMed  Google Scholar 

  17. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  18. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z, et al. The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol. 2019;10:2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 2016;34:539–73.

    Article  CAS  PubMed  Google Scholar 

  21. Wanchoo R, Karam S, Uppal NN, Barta VS, Deray G, Devoe C, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol. 2017;45(2):160–9.

    Article  CAS  PubMed  Google Scholar 

  22. Varricchi G, Marone G, Mercurio V, Galdiero MR, Bonaduce D, Tocchetti CG. Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr Med Chem. 2018;25(11):1327–39.

    Article  CAS  PubMed  Google Scholar 

  23. Psimaras D. Neuromuscular complications of immune checkpoint inhibitors. Presse Med. 2018;47(11–12 Pt 2):e253–9.

    Article  PubMed  Google Scholar 

  24. Spiers L, Coupe N, Payne M. Toxicities associated with checkpoint inhibitors-an overview. Rheumatology (Oxford). 2019;58(Suppl 7):vii7–16.

    Article  CAS  Google Scholar 

  25. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.

    Article  PubMed  Google Scholar 

  26. Boddu P, Kantarjian H, Garcia-Manero G, Allison J, Sharma P, Daver N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma. 2018;59(4):790–802.

    Article  CAS  PubMed  Google Scholar 

  27. Haroun F, Solola SA, Nassereddine S, Tabbara I. PD-1 signaling and inhibition in AML and MDS. Ann Hematol. 2017;96(9):1441–8.

    Article  CAS  PubMed  Google Scholar 

  28. Stahl M, Goldberg AD. Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets. Curr Oncol Rep. 2019;21(4):37.

    Article  PubMed  Google Scholar 

  29. Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol. 2019;10:609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Przespolewski A, Szeles A, Wang ES. Advances in immunotherapy for acute myeloid leukemia. Future Oncol. 2018;14(10):963–78.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Chen J, Wang M, Zhang L, Yu L. One stone, two birds: the roles of Tim-3 in acute myeloid leukemia. Front Immunol. 2021;12:618710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin cancer Res. 2008;14(10):3044–51.

    Article  CAS  PubMed  Google Scholar 

  33. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375(2):143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, et al. Efficacy, safety, and biomarkers of response to Azacitidine and Nivolumab in relapsed/refractory acute Myeloid leukemia: a nonrandomized, open-label Phase II Study. Cancer Discov. 2019;9(3):370–83.

    Article  CAS  PubMed  Google Scholar 

  36. Assi R, Kantarjian HM, Daver NG, Garcia-Manero G, Benton CB, Thompson PA, et al. Results of a phase 2, open-label study of idarubicin (I), cytarabine (A) and nivolumab (Nivo) in patients with newly diagnosed acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood. 2018;132(Supplement 1):905.

    Article  Google Scholar 

  37. Kline J, Liu H, Michael T, Artz AS, Godfrey J, Curran EK, et al. Pembrolizumab for the treatment of disease relapse following allogeneic hematopoietic cell transplantation. Blood. 2018;132(Supplement 1):3415.

    Article  Google Scholar 

  38. Ravandi F, Assi R, Daver N, Benton CB, Kadia T, Thompson PA, et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019;6(9):e480–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zheng H, Mineishi S, Claxton D, Zhu J, Zhao C, Jia B, et al. A phase I clinical trial of avelumab in combination with decitabine as first line treatment of unfit patients with acute myeloid leukemia. Am J Hematol. 2021;96:46–50.

    Article  CAS  Google Scholar 

  40. Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the treatment of cancer. J Interferon Cytokine Res. 2019;39(1):6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018;281(1):57–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta. 2012;413(15–16):1163–70.

    Article  CAS  PubMed  Google Scholar 

  43. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–71.

    Article  CAS  PubMed  Google Scholar 

  44. Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front Immunol. 2018;9:444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Broughton SE, Hercus TR, Nero TL, Kan WL, Barry EF, Dottore M, et al. A dual role for the N-terminal domain of the IL-3 receptor in cell signalling. Nat Commun. 2018;9(1):386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol. 2007;7(6):425–8.

    Article  PubMed  CAS  Google Scholar 

  47. Llopiz D, Ruiz M, Infante S, Villanueva L, Silva L, Hervas-Stubbs S, et al. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget. 2017;8(2):2659–71.

    Article  PubMed  Google Scholar 

  48. Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  CAS  PubMed  Google Scholar 

  49. Fioravanti J, Di Lucia P, Magini D, Moalli F, Boni C, Benechet AP, et al. Effector CD8(+) T cell-derived interleukin-10 enhances acute liver immunopathology. J Hepatol. 2017;67(3):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, et al. IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell. 2011;20(6):781–96.

    Article  CAS  PubMed  Google Scholar 

  51. Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive plasticity of IL-10(+) and IL-35(+) T(reg) cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20(6):724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  53. Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8–15.

    Article  CAS  PubMed  Google Scholar 

  54. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. van den Ancker W, Wijnands PGJB, Ruben JM, Westers TM, Punt B, Bachas C, et al. Procedures for the expansion of CD14(+) precursors from acute myeloid leukemic cells to facilitate dendritic cell-based immunotherapy. Immunotherapy. 2013;5(11):1183–90.

    Article  PubMed  CAS  Google Scholar 

  56. Thomas X, Raffoux E, Renneville A, Pautas C, de Botton S, Terre C, et al. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study. Cancer. 2010;116(7):1725–32.

    Article  CAS  PubMed  Google Scholar 

  57. Gurion R, Belnik-Plitman Y, Gafter-Gvili A, Paul M, Vidal L, Ben-Bassat I, et al. Colony-stimulating factors for prevention and treatment of infectious complications in patients with acute myelogenous leukemia. Cochrane Database Syst Rev. 2012;2012(6):CD008238.

    PubMed Central  Google Scholar 

  58. Norsworthy KJ, Cho E, Arora J, Kowalski J, Tsai H-L, Warlick E, et al. Differentiation therapy in poor risk myeloid malignancies: results of companion phase II studies. Leuk Res. 2016;49:90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nakayama H, Tomizawa D, Tanaka S, Iwamoto S, Shimada A, Saito AM, et al. Fludarabine, cytarabine, granulocyte colony-stimulating factor and idarubicin for relapsed childhood acute myeloid leukemia. Pediatr Int. 2017;59(10):1046–52.

    Article  CAS  PubMed  Google Scholar 

  60. Feng X, Lan H, Ruan Y, Li C. Impact on acute myeloid leukemia relapse in granulocyte colony-stimulating factor application: a meta-analysis. Hematology. 2018;23(9):581–9.

    Article  CAS  PubMed  Google Scholar 

  61. Scarfò I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer. 2017;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66.

    Article  CAS  PubMed  Google Scholar 

  63. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao L, Cao YJ. Engineered T Cell therapy for cancer in the clinic. Front Immunol. 2019;10:2250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  66. Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE. Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther. 2010;10(2):77–90.

    Article  CAS  PubMed  Google Scholar 

  67. Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 2018;4:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Garber K. Driving T-cell immunotherapy to solid tumors. Nat Biotechnol. 2018;36(3):215–9.

    Article  CAS  PubMed  Google Scholar 

  70. Spranger S, Jeremias I, Wilde S, Leisegang M, Stärck L, Mosetter B, et al. TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood. 2012;119(15):3440–9.

    Article  CAS  PubMed  Google Scholar 

  71. Hofmann S, Schubert M-L, Wang L, He B, Neuber B, Dreger P, et al. Chimeric antigen receptor (CAR) T Cell therapy in acute myeloid leukemia (AML). J Clin Med. 2019;8(2):200.

    Article  CAS  PubMed Central  Google Scholar 

  72. Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, et al. Phase I trial of autologous CAR T cells targeting NKG2D Ligands in patients with AML/MDS and multiple Myeloma. Cancer Immunol Res. 2019;7(1):100–12.

    Article  CAS  PubMed  Google Scholar 

  73. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21(11):2122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Q, Wang Y, Lv H, Han Q, Fan H, Guo B, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  75. Enblad G, Karlsson H, Gammelgård G, Wenthe J, Lövgren T, Amini RM, et al. A phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin Cancer Res. 2018;24(24):6185–94.

    Article  CAS  PubMed  Google Scholar 

  76. Sallman DA, Kerre T, Poire X, Havelange V, Lewalle P, Davila ML, et al. Remissions in relapse/refractory acute myeloid leukemia patients following treatment with NKG2D CAR-T therapy without a prior preconditioning chemotherapy. Blood. 2018;132(Supplement 1):902.

    Article  Google Scholar 

  77. Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. Erratum: first-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(9):1899.

    PubMed  PubMed Central  Google Scholar 

  78. Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov. 2018;17(7):509–27.

    Article  CAS  PubMed  Google Scholar 

  79. Garfin PM, Feldman EJ. Antibody-based treatment of acute myeloid leukemia. Curr Hematol Malig Rep. 2016;11(6):545–52.

    Article  PubMed  Google Scholar 

  80. Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Catovsky D. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol. 1998;51(5):364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  82. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Testa U, Riccioni R, Diverio D, Rossini A, Lo Coco F, Peschle C. Interleukin-3 receptor in acute leukemia. Leukemia. 2004;18(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  84. Bakker ABH, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443–50.

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE. 2015;10(9):e0137345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in acute myeloid leukemia: recently approved therapies and drugs in development. Cancers (Basel). 2020;12(11):3225.

    Article  CAS  Google Scholar 

  87. Reusch U, Harrington KH, Gudgeon CJ, Fucek I, Ellwanger K, Weichel M, et al. Characterization of CD33/CD3 Tetravalent bispecific Tandem Diabodies (TandAbs) for the treatment of acute myeloid Leukemia. Clin Cancer Res. 2016;22(23):5829–38.

    Article  CAS  PubMed  Google Scholar 

  88. Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28(4):143–53.

    Article  CAS  PubMed  Google Scholar 

  89. Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute Myeloid Leukemia unsuitable for Intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.

    Article  PubMed  CAS  Google Scholar 

  90. Hütter-Krönke M-L, Benner A, Döhner K, Krauter J, Weber D, Moessner M, et al. Salvage therapy with high-dose cytarabine and mitoxantrone in combination with all-trans retinoic acid and gemtuzumab ozogamicin in acute myeloid leukemia refractory to first induction therapy. Haematologica. 2016;101(7):839–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Vey N, Delaunay J, Martinelli G, Fiedler W, Raffoux E, Prebet T, et al. Phase I clinical study of RG7356, an anti-CD44 humanized antibody, in patients with acute myeloid leukemia. Oncotarget. 2016;7(22):32532–42.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Abaza Y, Kantarjian H, Garcia-Manero G, Estey E, Borthakur G, Jabbour E, et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood. 2017;129(10):1275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Candoni A, Papayannidis C, Martinelli G, Simeone E, Gottardi M, Iacobucci I, et al. Flai (fludarabine, cytarabine, idarubicin) plus low-dose Gemtuzumab Ozogamicin as induction therapy in CD33-positive AML: final results and long term outcome of a phase II multicenter clinical trial. Am J Hematol. 2018;93(5):655–63.

    Article  CAS  PubMed  Google Scholar 

  94. Medeiros BC, Tanaka TN, Balaian L, Bashey A, Guzdar A, Li H, et al. A phase I/II trial of the combination of Azacitidine and Gemtuzumab Ozogamicin for treatment of relapsed acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(5):346-352.e5.

    Article  PubMed  Google Scholar 

  95. Fathi AT, Erba HP, Lancet JE, Stein EM, Ravandi F, Faderl S, et al. A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML. Blood. 2018;132(11):1125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Narayan R, Blonquist TM, Emadi A, Hasserjian RP, Burke M, Lescinskas C, et al. A phase 1 study of the antibody-drug conjugate brentuximab vedotin with re-induction chemotherapy in patients with CD30-expressing relapsed/refractory acute myeloid leukemia. Cancer. 2020;126(6):1264–73.

    Article  CAS  PubMed  Google Scholar 

  97. Penel-Page M, Plesa A, Girard S, Marceau-Renaut A, Renard C, Bertrand Y. Association of fludarabin, cytarabine, and fractioned gemtuzumab followed by hematopoietic stem cell transplantation for first-line refractory acute myeloid leukemia in children: a single-center experience. Pediatr Blood Cancer. 2020;67(6):e28305.

    Article  PubMed  Google Scholar 

  98. Goldberg AD, Atallah E, Rizzieri D, Walter RB, Chung K-Y, Spira A, et al. Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: a phase I study. Leuk Res. 2020;95:106385.

    Article  CAS  PubMed  Google Scholar 

  99. Montesinos P, Roboz GJ, Bulabois C-E, Subklewe M, Platzbecker U, Ofran Y, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia. 2021;35(1):62–74.

    Article  CAS  PubMed  Google Scholar 

  100. Guy DG, Uy GL. Bispecific antibodies for the treatment of acute myeloid leukemia. Curr Hematol Malig Rep. 2018;13(6):417–25.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ravandi F, Bashey A, Foran JM, Stock W, Mawad R, Blum W et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 × CD3 T cell-engaging bispecific antibody: initial results of a phase 1 study. Blood. 2018;132(Supplement 1): 763. Available from: https://doi.org/10.1182/blood-2018-99-119786

  102. Uy GL, Aldoss I, Foster MC, Sallman DA, Sweet KL, Rizzieri DA, et al. Flotetuzumab, an Investigational CD123 x CD3 Bispecific Dart® Protein, in salvage therapy for primary refractory and early relapsed Acute Myeloid Leukemia (AML) Patients. Blood [Internet]. 2019 Nov 13;134(Supplement_1):733. Available from: https://doi.org/10.1182/blood-2019-122073

  103. Subklewe M, Stein A, Walter RB, Bhatia R, Wei AH, Ritchie D et al. Preliminary Results from a phase 1 first-in-human study of AMG 673, a Novel Half-Life Extended (HLE) Anti-CD33/CD3 BiTE® (Bispecific T-Cell Engager) in patients with relapsed/refractory (R/R) acute Myeloid Leukemia (AML). Blood [Internet]. 2019 Nov 13;134(Supplement_1): 833. Available from: https://doi.org/10.1182/blood-2019-127977

  104. Westervelt P, Cortes JE, Altman JK, Long M, Oehler VG, Gojo I. Phase 1 first-in-human trial of AMV564, a bivalent Bispecific (2:2) CD33, CD3 T-cell engager, in patients with relapsed, refractory acute myeloid leukemia (AML). Blood. 2019;134(Supplement_1):834. https://doi.org/10.1182/blood-2019-129042.

    Article  Google Scholar 

  105. Ravandi F, Walter RB, Subklewe M, Buecklein V, Jongen-Lavrencic M, Paschka P, et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Am Soc Clin Oncol. 2020;38:7508.

    Article  Google Scholar 

  106. Lollini P-L, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. Nat Rev Cancer. 2006;6(3):204–16.

    Article  CAS  PubMed  Google Scholar 

  107. DeMaria PJ, Bilusic M. Cancer vaccines. Hematol Oncol Clin North Am. 2019;33(2):199–214.

    Article  PubMed  Google Scholar 

  108. Chiang CL-L, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: where are we? Vaccines. 2015;3(2):344–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 2017;38(8):577–93.

    Article  CAS  PubMed  Google Scholar 

  110. Santos PM, Butterfield LH. Dendritic cell-based cancer vaccines. J Immunol. 2018;200(2):443–9.

    Article  CAS  PubMed  Google Scholar 

  111. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49.

    Article  CAS  PubMed  Google Scholar 

  113. Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release. 2016;240:227–34.

    Article  CAS  PubMed  Google Scholar 

  114. Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: tumor-associated antigens vs neoantigens. World J Gastroenterol. 2018;24(48):5418–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li L, Goedegebuure SP. Gillanders WE Preclinical and clinical development of neoantigen vaccines. Ann Oncol. 2017;28(suppl12):s11-17.

    Article  Google Scholar 

  116. Alatrash G, Molldrem JJ. Immunotherapy of AML. Cancer Treat Res. 2010;145:237–55.

    Article  CAS  PubMed  Google Scholar 

  117. Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, et al. WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol. 2015;90(7):602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. van de Loosdrecht AA, van Wetering S, Santegoets SJAM, Singh SK, Eeltink CM, den Hartog Y, et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol Immunother. 2018;67(10):1505–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wang D, Huang XF, Hong B, Song X-T, Hu L, Jiang M, et al. Efficacy of intracellular immune checkpoint-silenced DC vaccine. JCI Insight. 2018;3(3):e98368.

    Article  PubMed Central  Google Scholar 

  120. Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2018;2(3):224–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES, Kocent J, et al. NY-ESO-1 vaccination in combination with Decitabine induces antigen-specific T-lymphocyte responses in patients with Myelodysplastic syndrome. Clin Cancer Res. 2018;24(5):1019–29.

    Article  CAS  PubMed  Google Scholar 

  122. Ueda Y, Ogura M, Miyakoshi S, Suzuki T, Heike Y, Tagashira S, et al. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci. 2017;108(12):2445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130(15):1713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khoury HJ, Collins RHJ, Blum W, Stiff PS, Elias L, Lebkowski JS, et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer. 2017;123(16):3061–72.

    Article  CAS  PubMed  Google Scholar 

  125. Hamilton BK, Copelan EA. Concise review: the role of hematopoietic stem cell transplantation in the treatment of acute myeloid leukemia. Stem Cells. 2012;30(8):1581–6.

    Article  CAS  PubMed  Google Scholar 

  126. Pei X, Huang X. New approaches in allogenic transplantation in AML. Semin Hematol. 2019;56(2):147–54.

    Article  PubMed  Google Scholar 

  127. Zhao Y, Chen X, Feng S. Autologous hematopoietic stem cell transplantation in acute Myelogenous Leukemia. Biol blood marrow Transplant. 2019;25(9):e285–92.

    Article  PubMed  Google Scholar 

  128. Orti G, Barba P, Fox L, Salamero O, Bosch F, Valcarcel D. Donor lymphocyte infusions in AML and MDS: enhancing the graft-versus-leukemia effect. Exp Hematol. 2017;48:1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The idea of the article AM; literature search AM; writing AM, SH; critical revision Sara Hemmati, NR; corresponding author Nima Rezaei.

Corresponding author

Correspondence to N. Rezaei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and informed consent

This article does not contain any studies directly involving human participants, as it is a review of data already collected in a hernia database and formal consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeinafshar, A., Hemmati, S. & Rezaei, N. Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 23, 2431–2447 (2021). https://doi.org/10.1007/s12094-021-02662-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02662-1

Keywords

Navigation