Skip to main content

Advertisement

Log in

Circular RNA circHIPK3 modulates prostate cancer progression via targeting miR-448/MTDH signaling

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Prostate cancer (PCa) is one of the most diagnosed cancers in men worldwide. Several studies have identified that circular RNAs (circRNAs) have a crucial impact on the biological processes in PCa. Therefore, it is necessary to study the molecular mechanism of circRNAs in tumor progression and metastasis.

Methods

RNA interference was used to decrease circHIPK3 and MTDH expression. Overexpression vector was used to increase circHIPK3 and MTDH expression. Luciferase reporter assay were used to detect the relationship between circHIPK3 and miR-448 or between miR-448 and MTDH. MTT assay, colony formation assay and transwell assay were used to measure proliferation and migration of PCa cells.

Results

Circular RNA circHIPK3 was significantly increased in PCa tissues and cell lines. And overexpression of circHIPK3 promoted the migration, proliferation, and invasion of PC-3 and 22Rv1 cells, while knockdown of circHIPK3 markedly repressed the above-mentioned series of biological processes. Furthermore, circHIPK3 promoted metadherin (MTDH) expression by sponging miR‐448. In vivo experiments, it was also found that overexpression of circHIPK3 significantly promoted tumor growth.

Conclusions

Our research shows that circHIPK3 plays a carcinogenic effect in PCa by regulating the miR-448/MTDH axis, indicating that circHIPK3 may be a potential therapeutic target for PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  Google Scholar 

  2. Miyake H, Fujisawa M. Molecular-targeted therapy for prostate cancer. Nihon Rinsho. 2016;74:2–5.

    PubMed  Google Scholar 

  3. Hou AH, Sullivan KF, Crawford ED. Targeted focal therapy for prostate cancer: a review. Curr Opin Urol. 2009;19:283–9.

    Article  Google Scholar 

  4. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16:94.

    Article  Google Scholar 

  5. Liu J, Li D, Luo H, Zhu X. Circular RNAs: the star molecules in cancer. Mol Aspects Med. 2019;70:141–52.

    Article  CAS  Google Scholar 

  6. Bach DH, Lee SK, Sood AK. Circular RNAs in cancer. Mol Ther Nucleic Acids. 2019;16:118–29.

    Article  CAS  Google Scholar 

  7. Xia L, Song M, Sun M, Wang F, Yang C. Circular RNAs as biomarkers for cancer. Adv Exp Med Biol. 2018;1087:171–87.

    Article  CAS  Google Scholar 

  8. Zhang M, Xin Y. Circular RNAs: a new frontier for cancer diagnosis and therapy. J Hematol Oncol. 2018;11:21.

    Article  Google Scholar 

  9. Chen G, Shi Y, Liu M, Sun J. CircHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 2018;9:175.

    Article  Google Scholar 

  10. Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, Sun H, Pan Y, He B, Wang S. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9:417.

    Article  Google Scholar 

  11. Ke Z, Xie F, Zheng C, Chen D. CircHIPK3 promotes proliferation and invasion in nasopharyngeal carcinoma by abrogating miR-4288-induced ELF3 inhibition. J Cell Physiol. 2019;234:1699–706.

    Article  CAS  Google Scholar 

  12. Jin P, Huang Y, Zhu P, Zou Y, Shao T, Wang O. CircRNA circHIPK3 serves as a prognostic marker to promote glioma progression by regulating miR-654/IGF2BP3 signaling. Biochem Biophys Res Commun. 2018;503:1570–4.

    Article  CAS  Google Scholar 

  13. Chen X, Mao R, Su W, Yang X, Geng Q, Guo C, Wang Z, Wang J, Kresty LA, Beer DG, Chang AC, Chen G. Circular RNA circHIPK3 modulates autophagy via miR124-3p-STAT3-PRKAA/AMPKalpha signaling in STK11 mutant lung cancer. Autophagy. 2020;16:659–71.

    Article  CAS  Google Scholar 

  14. Lu H, Han X, Ren J, Ren K, Li Z, Sun Z. Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149. Cancer Biol Ther. 2020;21:113–21.

    Article  CAS  Google Scholar 

  15. Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, Liu D, Wang M, Wang L, Zeng F, Jiang G. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017;18:1646–59.

    Article  CAS  Google Scholar 

  16. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  CAS  Google Scholar 

  17. Lin J, Feng X, Zhang J. Circular RNA circHIPK3 modulates the proliferation of airway smooth muscle cells by miR-326/STIM1 axis. Life Sci. 2020;255:117835.

    Article  CAS  Google Scholar 

  18. Wang J, Li X, Liu Y, Peng C, Zhu H, Tu G, Yu X, Li Z. CircHIPK3 promotes pyroptosis in acinar cells through regulation of the miR-193a-5p/GSDMD axis. Front Med. 2020;7:88.

    Article  Google Scholar 

  19. Tian F, Wang Y, Xiao Z, Zhu X. Circular RNA circHIPK3 promotes NCI-H1299 and NCI-H2170 cell proliferation through miR-379 and its target IGF1. Zhongguo Fei Ai Za Zhi. 2017;20:459–67.

    PubMed  Google Scholar 

  20. Yan Y, Su M, Qin B. CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal. Biochem Biophys Res Commun. 2020;524:839–46.

    Article  CAS  Google Scholar 

  21. Zhang Y, Li C, Liu X, Wang Y, Zhao R, Yang Y, Zheng X, Zhang Y, Zhang X. CircHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637. EBioMedicine. 2019;48:277–88.

    Article  Google Scholar 

  22. Xie F, Zhao N, Zhang H, Xie D. Circular RNA circHIPK3 promotes gemcitabine sensitivity in bladder cancer. J Cancer. 2020;11:1907–12.

    Article  CAS  Google Scholar 

  23. Ghasemi S, Emadi-Baygi M, Nikpour P. Down-regulation of circular RNA ITCH and circHIPK3 in gastric cancer tissues. Turk J Med Sci. 2019;49:687–95.

    Article  CAS  Google Scholar 

  24. Liu WG, Xu Q. Upregulation of circHIPK3 promotes the progression of gastric cancer via Wnt/beta-catenin pathway and indicates a poor prognosis. Eur Rev Med Pharmacol Sci. 2019;23:7905–12.

    PubMed  Google Scholar 

  25. Wei J, Xu H, Wei W, Wang Z, Zhang Q, De W, Shu Y. CircHIPK3 promotes cell proliferation and migration of gastric cancer by sponging miR-107 and regulating BDNF expression. Onco Targets Ther. 2020;13:1613–24.

    Article  CAS  Google Scholar 

  26. Teng F, Xu J, Zhang M, Liu S, Gu Y, Zhang M, Wang X, Ni J, Qian B, Shen R, Jia X. Comprehensive circular RNA expression profiles and the tumor-suppressive function of circHIPK3 in ovarian cancer. Int J Biochem Cell Biol. 2019;112:8–17.

    Article  CAS  Google Scholar 

  27. Liu N, Zhang J, Zhang LY, Wang L. CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2018;22:3713–8.

    CAS  PubMed  Google Scholar 

  28. Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X, Zhang YY, Liu B, Zhang SJ, Wang JJ, Zhang SH, Wu JH, Zhao C, Yan B. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation. 2017;136:1629–42.

    Article  CAS  Google Scholar 

  29. Xiao-Long M, Kun-Peng Z, Chun-Lin Z. Circular RNA circHIPK3 is down-regulated and suppresses cell proliferation, migration and invasion in osteosarcoma. J Cancer. 2018;9:1856–62.

    Article  Google Scholar 

  30. Lv Y, Lei Y, Hu Y, Ding W, Zhang C, Fang C. miR-448 negatively regulates ovarian cancer cell growth and metastasis by targeting CXCL12. Clin Transl Oncol. 2015;17:903–9.

    Article  CAS  Google Scholar 

  31. Wu X, Tang H, Liu G, Wang H, Shu J, Sun F. miR-448 suppressed gastric cancer proliferation and invasion by regulating ADAM10. Tumour Biol. 2016;37:10545–51.

    Article  CAS  Google Scholar 

  32. Zhu H, Zhou X, Ma C, Chang H, Li H, Liu F, Lu J. Low expression of miR-448 induces EMT and promotes invasion by regulating ROCK2 in hepatocellular carcinoma. Cell Physiol Biochem. 2015;36:487–98.

    Article  CAS  Google Scholar 

  33. Su HY, Lin ZY, Peng WC, Guan F, Zhu GT, Mao BB, Dai B, Huang H, Hu ZQ. MiR-448 downregulates CTTN to inhibit cell proliferation and promote apoptosis in glioma. Eur Rev Med Pharmacol Sci. 2018;22:3847–54.

    PubMed  Google Scholar 

  34. Chen J, Jia Y, Jia ZH, Zhu Y, Jin YM. Silencing the expression of MTDH increases the radiation sensitivity of SKOV3 ovarian cancer cells and reduces their proliferation and metastasis. Int J Oncol. 2018;53:2180–90.

    CAS  PubMed  Google Scholar 

  35. He A, He S, Huang C, Chen Z, Wu Y, Gong Y, Li X, Zhou L. MTDH promotes metastasis of clear cell renal cell carcinoma by activating SND1-mediated ERK signaling and epithelial-mesenchymal transition. Aging. 2020;12:1465–87.

    Article  CAS  Google Scholar 

  36. Chen Z, Ma Y, Pan Y, Zhu H, Yu C, Sun C. MiR-1297 suppresses pancreatic cancer cell proliferation and metastasis by targeting MTDH. Mol Cell Probes. 2018;40:19–26.

    Article  CAS  Google Scholar 

  37. Jin Y, Zhang ZL, Huang Y, Zhang KN, Xiong B. MiR-182-5p inhibited proliferation and metastasis of colorectal cancer by targeting MTDH. Eur Rev Med Pharmacol Sci. 2019;23:1494–501.

    CAS  PubMed  Google Scholar 

  38. Li J, Li C, Li H, Zhang T, Hao X, Chang J, Xu Y. MicroRNA30a5p suppresses tumor cell proliferation of human renal cancer via the MTDH/PTEN/AKT pathway. Int J Mol Med. 2018;41:1021–9.

    CAS  PubMed  Google Scholar 

  39. Qiao W, Cao N, Yang L. MicroRNA-154 inhibits the growth and metastasis of gastric cancer cells by directly targeting MTDH. Oncol Lett. 2017;14:3268–74.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Jiangsu Province (BK20151158); Innovation Team Project of Xuzhou Central Hospital ( XZB201607, XZB201610); Youth Medical Key Talent Project of Jiangsu Province (QNRC2016389, QNRC2016386); 333 Key Research and Development Plan Project of Jiangsu Province (BRA2017294, BE217635).

Author information

Authors and Affiliations

Authors

Contributions

DL and LS are responsible for the conception or design of the work. XL and QL contribute the acquisition, analysis, or interpretation of data for the work. ZZ and CH conduct cell viability assay and luciferase reporter assay. All authors finally approved the manuscript version to be published.

Corresponding author

Correspondence to C. H. Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Ethical Committee of Xuzhou Central Hospital and conducted in accordance with the ethical standards.

Informed consent

Subjects signed the informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, .C., Song, .L., Li, .Z. et al. Circular RNA circHIPK3 modulates prostate cancer progression via targeting miR-448/MTDH signaling. Clin Transl Oncol 23, 2497–2506 (2021). https://doi.org/10.1007/s12094-021-02650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02650-5

Keywords

Navigation