Skip to main content

Advertisement

Log in

HPV16 infection promotes an M2 macrophage phenotype to promote the invasion and metastasis of esophageal squamous cell carcinoma

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Objectives

High-risk human papillomavirus (HR-HPV) is an important risk factor for esophageal cancer. Macrophages constitute a crucial immune medium for regulating HPV-related tumors; however, the specific regulatory mechanisms remain unknown. Therefore, the purpose of our current study was to investigate the mechanism by which HPV16E6 regulates macrophages to promote the invasion and metastasis of esophageal cancer.

Methods

HPV16E6 infection was detected by polymerase chain reaction. Immunohistochemistry was used to verify the distribution of tumor-associated macrophages (TAMs) and MMP-9 expression in esophageal squamous cell carcinoma tissues (ESCCs), and cancer adjacent normal tissues (CANs) from Kazakh patients. ESCC cells were transfected with a plasmid over-expressing HPV16E6 and non-contact cocultured with macrophages.

Results

The infection rate of HPV16E6 in Kazakh ESCCs was clearly higher than that in CANs (P < 0.05). The density of CD163-positive TAMs was significantly positively correlated with HPV16E6 infection in ESCCs (P < 0.05). After coculturing macrophages and EC9706 cells transfected with the HPV16E6 plasmid, the phenotype of macrophages transformed into M2 macrophages. The migration and invasion ability of ESCC cells were higher in the HPV16E6-transfected and coculture group than in the HPV16E6 empty vector-transfected and non-cocultured HPV16E6-transfected groups (all P < 0.05). The density of M2-like TAMs in ESCCs was positively correlated with the level of MMP-9 expression. MMP-9 expression in the HPV16E6-ESCC coculture macrophages group was substantially higher than that in controls (all P < 0.05).

Conclusions

HPV16 infection mediates tumor-associated macrophages to promote ESCC invasion and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The authors declare that all original data are available for inspection and evaluation.

References

  1. Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

  2. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  3. Ekman S, Dreilich M, Lennartsson J, et al. Esophageal cancer: current and emerging therapy modalities. Expert Rev Anticancer Ther. 2008;8:1433–48.

    Article  PubMed  Google Scholar 

  4. Hu J, Li L, Pang L, et al. HLA-DRB1*1501 and HLA-DQB1*0301 alleles are positively associated with HPV16 infection–related Kazakh esophageal squamous cell carcinoma in Xinjiang China. Cancer Immunol Immunother. 2012;61:2135–41.

    Article  PubMed  Google Scholar 

  5. Zhou Y, Pan Y, Zhang S, et al. Increased phosphorylation of p70 S6 kinase is associated with HPV16 infection in cervical cancer and esophageal cancer. Br J Cancer. 2007;97:218–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guang-Cheng D, Li-Dong W, Shao-Hua LI, et al. Correlation between human papillomavirus infection and esophageal squamous cell carcinoma and gastric cardia adenocarcinoma in high-incidence area of Henan province. Chinese J Cancer Prev Treat. 2009;16:252–5.

    Google Scholar 

  7. Kang XD, Zheng Y, Chen WG, et al. Effects of HPV16E6 transfection on the biological behavior of Eca109 and Eca9706 cells. Oncol Lett. 2018;15:1646–54.

    PubMed  Google Scholar 

  8. Barros MR, de Melo CML, Rego MLCMG, et al. Activities of stromal and immune cells in HPV-related cancers. J Exp Clin Cancer Res. 2018;37(1):137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ilir A ,  Chen Z,  Wang T, et al. Oral alpha, beta, and gamma HPV types and risk of incident esophageal cancer. Cancer Epidemiol Biomarkers Prev. 2018;27(10):1168–75.

  10. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2008;9:239–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Aras S, Zaidi MR. TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer. 2017;117:1583–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. El-Arabey AA, Abdalla M, Abd-Allah AR. SnapShot: TP53 status and macrophages infiltration in TCGA-analyzed tumors. Int Immunopharmacol. 2020;86:106758.

    Article  CAS  PubMed  Google Scholar 

  13. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    Article  CAS  PubMed  Google Scholar 

  14. Geissmann F, Gordon S, Hume DA, et al. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010;10:453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.

    Article  CAS  PubMed  Google Scholar 

  16. Lin EW, Karakasheva TA, Hicks PD, et al. The tumor microenvironment in esophageal cancer. Oncogene. 2016;35:5337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu JM, Liu K, Liu JH, et al. CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squmous cell carcinoma. Oncotarget. 2017;8:21526–38.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guo SJ, Lin DM, Li J, et al. Tumor-associated macrophages and CD3-zeta expression of tumor-infiltrating lymphocytes in human esophageal squamous-cell carcinoma. Dis Esophagus. 2007;20(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  19. Verollet C, Charriere GM, Labrousse A, et al. Extracellular proteolysis in macrophage migration: losing grip for a breakthrough. Eur J Immunol. 2011;41:2805–13.

    Article  CAS  PubMed  Google Scholar 

  20. Spector TD, et al. Risk factors for osteoarthritis: genetics. Osteoarthr Cartil. 2004;12:S39–44.

    Article  Google Scholar 

  21. Wang K, Zhou Y, Li G, et al. MMP8 and MMP-9 gene polymorphisms were associated with breast cancer risk in a Chinese Han population. Sci Rep. 2018;8:13422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chu D, Zhao Z, Yi Z, et al. Matrix metalloproteinase-9 is associated with relapse and prognosis of patients with colorectal cancer. Ann Surg Oncol. 2012;19:318–25.

    Article  PubMed  Google Scholar 

  23. Hwang TL, Lee LY, Wang CC, et al. Claudin-4 expression is associated with tumor invasion, MMP-2 and MMP-9 expression in gastric cancer. Exp Ther Med. 2010;1:789–97.

    Article  PubMed  PubMed Central  Google Scholar 

  24. El-Arabey AA, Denizli M, Kanlikilicer P, et al. GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal. 2020;68:109539.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao-Jing C, Ling-Fei H, Xiang-Guang W, et al. Clinical significance of CD163+ and CD68+ tumor-associated macrophages in high-risk HPV-related cervical cancer. J Cancer. 2017;8:3868–75.

    Article  CAS  Google Scholar 

  26. Hu JM, Liu K, Liu JH, et al. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis. Exp Mol Pathol. 2017;102:15–22.

    Article  CAS  PubMed  Google Scholar 

  27. Jihong L, Chunxiao Li, Liyan Z, et al. Association of tumour-associated macrophages with cancer cell EMT, invasion, and metastasis of Kazakh oesophageal squamous cell cancer. Diagn Pathol. 2019;14:55.

    Article  CAS  Google Scholar 

  28. Singh C, Roy-Chowdhuri S. Quantitative real-time PCR: recent advances. Methods Mol Biol. 2016;1392:161–76.

    Article  CAS  PubMed  Google Scholar 

  29. Marshall J. Transwell invasion assays. Methods Mol Biol. 2011;769:97–110.

    Article  CAS  PubMed  Google Scholar 

  30. Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013;38:400–12.

    Article  Google Scholar 

  31. Wang LD,  Zhou FY,  Li XM, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet. 2010;42(9):759–63.

  32. Wang XL, Liu K, Liu JH, et al. High infiltration of CD68-tumor associated macrophages, predict poor prognosis in Kazakh esophageal cancer patients. Int J Clin Exp Pathol. 2017;10:10282–92.

    PubMed  PubMed Central  Google Scholar 

  33. Hu JM, Li L, Chen YZ, et al. Human papillomavirus type 16 infection may be involved in esophageal squamous cell carcinoma carcinogenesis in Chinese Kazakh patients. Dis Esophagus. 2013;26:703–7.

    CAS  PubMed  Google Scholar 

  34. Cheah P-L, Koh C-C, et al. Esophageal squamous cell carcinomas in a Malaysian cohort show a lack of association with human papillomavirus. J Dig Dis. 2018;19:272–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hosnjak L, Poljak M. A systematic literature review of studies reporting human papillomavirus (HPV) prevalence in esophageal carcinoma over 36 years (1982–2017). Acta Dermatovenerol Alp Pannonica Adriat. 2018;27:127–36.

    PubMed  Google Scholar 

  36. Bognar L, Hegedus I, Bellyei S, et al. Prognostic role of HPV infection in esophageal squamous cell carcinoma. Infect Agents Cancer. 2018;13(1):38–46.

  37. Jaehong K, Jong-Sup B. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016;2016:1–11.

    Google Scholar 

  38. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.

    Article  CAS  PubMed  Google Scholar 

  39. Sigrun S. Immunopathogenesis of HPV-associated cancers and prospects for immunotherapy. Viruses. 2017;9:254.

    Article  CAS  Google Scholar 

  40. Medrek C, Ponten F, Jirstrom K, et al. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Subbarayan RS, Arnold L, Gomez JP, et al. The role of the innate and adaptive immune response in HPV-associated oropharyngeal squamous cell carcinoma. Laryngoscope Investig Otolaryngol. 2019;4:508–12.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li J, Xie Y, Wang X, et al. Overexpression of VEGF-C and MMP-9 predicts poor prognosis in Kazakh patients with esophageal squamous cell carcinoma. Peer J. 2019;7:8182–96.

  43. Pelekanou V, Villarroel-Espindola F, Schalper KA, et al. CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers. Breast Cancer Res. 2018;20:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Legrand C, Gilles C, Zahm J-M, et al. Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol. 1999;146(2):517–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. El-Arabey AA, Abdalla M, Abd-Allah AR. GATA3 and stemness of high-grade serous ovarian carcinoma: novel hope for the deadliest type of ovarian cancer. Hum Cell. 2020;33(3):904–6.

    Article  PubMed  Google Scholar 

  46. Lurier EB, Dalton D, Dampier W, et al. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology. 2017;222:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NO.81760428, NO.81960435 and NO.81460363), Start-up Project of High-level Talents Scientific Research in Shihezi University (RCZK2018C19), Science and Technology Development Project of Xinjiang Production and Construction Corps (NO. 2018AB033), National Early Detection and Treatment Project for Upper Digestive Tract in Rural Area in China (NO.2018), and The Youth Science and Technology Innovation Leading Talents Project of Corps (NO.2017CB004). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data analysis, drafting or revising the article, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to J. M. Hu.

Ethics declarations

Conflict of interest

The authors report no potential conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12094_2021_2642_MOESM1_ESM.docx

Supplementary file1 Table S1. Analyses of the clinical pathological parameters in ESCC patients. Table S2. The PCR reaction system of β-globin. Table S3. The PCR reaction system of the HPV16E6 gene. Table S4. The reaction system of qRT-PCR. Table S5. The reaction procedure of qRT-PCR (DOCX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Liu, K., Li, Y. et al. HPV16 infection promotes an M2 macrophage phenotype to promote the invasion and metastasis of esophageal squamous cell carcinoma. Clin Transl Oncol 23, 2382–2393 (2021). https://doi.org/10.1007/s12094-021-02642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02642-5

Keywords

Navigation