Skip to main content

Advertisement

Log in

Review of biomarker systems as an alternative for early diagnosis of ovarian carcinoma

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Early diagnosis of ovarian carcinoma is bound to boost the long-term endurance rate of the patients. Most ovarian tumors happen post menopause when the ovaries have no vital operation and therefore irregular ovarian role causes no signs. According to Muinao T. et al. (Heliyon. 5(12):e02826, 2019), if we consider the frequency of ovarian carcinoma to be moderate, a screening technique must accomplish a base specificity of 99.6% and sensitivity of over 75%. The classification and approval of early diagnostic biomarkers explicit to ovarian carcinoma are essentially required. Prevailing methods for early diagnosis of ovarian carcinoma incorporate TVS, biological marker examination, or a blend of the two or other. In recent years, it has been revealed that a combination of at least two biomarkers has beaten single biomarkers in measures for early diagnosis of the illness. In the present document, we survey the ongoing exploration of innovative characteristic methodologies and possible panels of carcinoma biological markers for the early diagnosis of ovarian carcinoma and discuss biomarkers as the plausible apparatus for model improvement and other progressed approaches as an effective alternative to the prevailing methods for early diagnosis of this dreadful disease to evade bogus analysis and inordinate expense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adolphi NL, Butler KS, Lovato DM, et al. Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Med Mol Imaging. 2012;7(3):308–19. https://doi.org/10.1002/cmmi.499.

    Article  CAS  Google Scholar 

  2. Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56. https://doi.org/10.1002/path.2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barnabas GD, Bahar-Shany K, Sapoznik S, et al. Microvesicle proteomic profiling of uterine liquid biopsy for ovarian cancer early detection. Mol Cell Proteomics. 2019;18(5):865–75. https://doi.org/10.1074/mcp.ra119.001362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chappelear A. About ovarian cancer: johns hopkins ovarian cancer center. In: Hopkinsmedicine.org. 2017. https://www.hopkinsmedicine.org/kimmel_cancer_center/cancers_we_treat/ovarian/about/ (Accessed 15 Dec 2020)

  5. Chatterjee M, Hurley LC, Tainsky MA. Paraneoplastic antigens as biomarkers for early diagnosis of ovarian cancer. Gynecol Oncol Rep. 2017;21:37–44. https://doi.org/10.1016/j.gore.2017.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Clarke CH, Yip C, Badgwell D, et al. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer. Gynecol Oncol. 2011;122(3):548–53. https://doi.org/10.1016/j.ygyno.2011.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper BC, Ritchie JM, Broghammer CL, et al. Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer. Clin Cancer Res. 2002;8(10):3193–7.

    CAS  PubMed  Google Scholar 

  8. Cramer DW, Bast RC, Berg CD, et al. Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prev Res. 2011;4(3):365–74. https://doi.org/10.1158/1940-6207.capr-10-0195.

    Article  Google Scholar 

  9. Das PM, Bast RC Jr. Early detection of ovarian cancer. Biomark Med. 2008;2(3):291–303. https://doi.org/10.2217/17520363.2.3.291.

    Article  CAS  PubMed  Google Scholar 

  10. Diamandis EP, Scorilas A, Fracchioli S, et al. Human Kallikrein 6 (hK6): a new potential serum biomarker for diagnosis and prognosis of ovarian carcinoma. J Clin Oncol. 2003;21(6):1035–43. https://doi.org/10.1200/jco.2003.02.022.

    Article  CAS  PubMed  Google Scholar 

  11. Elias KM, Guo J, Bast RC. Early detection of ovarian cancer. Hematol Oncol Clin North Am. 2018;32(6):903–14. https://doi.org/10.1016/j.hoc.2018.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Esteller M. Promoter hypermethylation and brca1 inactivation in sporadic breast and ovarian tumors. J Nat Cancer Inst. 2000;92(7):564–9. https://doi.org/10.1093/jnci/92.7.564.

    Article  CAS  PubMed  Google Scholar 

  13. Fazio B, Andrea C, Foti A, et al. SERS detection of biomolecules at physiological pH via aggregation of gold nanorods mediated by optical forces and plasmonic heating. Scientif Rep. 2016;6:1–24. https://doi.org/10.1038/srep26952.

    Article  CAS  Google Scholar 

  14. Fortner RT, Damms-Machado A, Kaaks R. Systematic review: tumor-associated antigen autoantibodies and ovarian cancer early detection. Gynecol Oncol. 2017;147(2):465–80. https://doi.org/10.1016/j.ygyno.2017.07.13.

    Article  CAS  PubMed  Google Scholar 

  15. Gorelik E. Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomark Prev. 2005;14(4):981–7. https://doi.org/10.1158/1055-9965.epi-04-0404.

    Article  CAS  Google Scholar 

  16. Han C, Bellone S, Siegel ER, et al. A novel multiple biomarker panel for the early detection of high-grade serous ovarian carcinoma. Gynecol Oncol. 2018;149(3):585–91. https://doi.org/10.1016/j.ygyno.2018.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Havrilesky LJ, Whitehead CM, Rubatt JM, et al. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence. Gynecol Oncol. 2008;110(3):374–82. https://doi.org/10.1016/j.ygyno.2008.04.041.

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteomics. 2004;3(4):355–66. https://doi.org/10.1074/mcp.r400006-mcp200.

    Article  CAS  PubMed  Google Scholar 

  19. Jing X, Wei F, Li J, et al. Diagnostic value of soluble B7–H4 and carcinoembryonic antigen in distinguishing malignant from benign pleural effusion. Clin Respir J. 2017;12(3):986–90. https://doi.org/10.1111/crj.12615.

    Article  CAS  PubMed  Google Scholar 

  20. Kim K, Visintin I, Alvero AB, Mor G. Development and validation of a protein-based signature for the detection of ovarian cancer. Clin Lab Med. 2009;29(1):47–55. https://doi.org/10.1016/j.cll.2009.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim Y-W, Bae SM, Lim H, Kim YJ, Ahn WS. Development of multiplexed bead-based immunoassays for the detection of early stage ovarian cancer using a combination of serum biomarkers. PLoS ONE. 2012;7(9):e44960. https://doi.org/10.1371/journal.pone.0044960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics — From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. 2015;89:121–34. https://doi.org/10.1016/j.addr.2015.03.009.

    Article  CAS  PubMed  Google Scholar 

  23. Lawicki S, Będkowska GE, Gacuta-Szumarska E, Szmitkowski M. The plasma concentration of VEGF, HE4 and CA125 as a new biomarkers panel in different stages and sub-types of epithelial ovarian tumors. J Ovarian Res. 2013;6(1):45. https://doi.org/10.1186/1757-2215-6-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lockwood S. Ovarian Cancer. HealthyWomen. Published September 16, 2009. https://www.healthywomen.org/condition/ovarian-cancer (Accessed 3 Jan 2021)

  25. Lokshin AE, Winans M, Landsittel D, et al. Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol Oncol. 2006;102(2):244–51. https://doi.org/10.1016/j.ygyno.2005.12.011.

    Article  CAS  PubMed  Google Scholar 

  26. Lokshin AE, Yurkovetsky Z, Nolen B, et al. Multimarker assay for early diagnosis of ovarian cancer. Cancer Res. 2006;66:155–155.

    Article  Google Scholar 

  27. Lycke M, Kristjansdottir B, Sundfeldt K. A multicenter clinical trial validating the performance of HE4, CA125, risk of ovarian malignancy algorithm and risk of malignancy index. Gynecol Oncol. 2018;151(1):159–65. https://doi.org/10.1016/j.ygyno.2018.08.025.

    Article  PubMed  Google Scholar 

  28. Lyng FM, Traynor D, Ramos IRM, Bonnier F, Byrne HJ. Raman spectroscopy for screening and diagnosis of cervical cancer. Anal Bioanal Chem. 2015;407(27):8279–89. https://doi.org/10.1007/s00216-015-8946-1.

    Article  CAS  PubMed  Google Scholar 

  29. Macdonald IK, Parsy-Kowalska CB, Chapman CJ. Autoantibodies: opportunities for early cancer detection. Trend Cancer. 2017;3(3):198–213. https://doi.org/10.1016/j.trecan.2017.02.003.

    Article  CAS  Google Scholar 

  30. Mariño IP, Blyuss O, Ryan A, et al. Change-point of multiple biomarkers in women with ovarian cancer. Biomed Signal Process Control. 2017;33:169–77. https://doi.org/10.1016/j.bspc.2016.11.015.

    Article  Google Scholar 

  31. McAlpine JN, El Hallani S, Lam SF, et al. Autofluorescence imaging can identify preinvasive or clinically occult lesions in fallopian tube epithelium: a promising step towards screening and early detection. Gynecol Oncol. 2011;120(3):385–92. https://doi.org/10.1016/j.ygyno.2010.12.333.

    Article  CAS  PubMed  Google Scholar 

  32. Mok SC, Chao J, Skates S, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. JNCI J NatCancer Instit. 2001;93(19):1458–64. https://doi.org/10.1093/jnci/93.19.1458.

    Article  CAS  Google Scholar 

  33. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Internat J Women’s Health. 2019;11:287–99. https://doi.org/10.2147/ijwh.s197604.

    Article  Google Scholar 

  34. Moore LE, Fung ET, McGuire M, et al. Evaluation of apolipoprotein A1 and posttranslationally modified forms of transthyretin as biomarkers for ovarian cancer detection in an independent study population. Cancer Epidemiol Biomark Prev. 2006;15(9):1641–6. https://doi.org/10.1158/1055-9965.epi-05-0980.

    Article  CAS  Google Scholar 

  35. Moore RG, Blackman A, Miller MC, et al. Multiple biomarker algorithms to predict epithelial ovarian cancer in women with a pelvic mass: Can additional makers improve performance? Gynecol Oncol. 2019;154(1):150–5. https://doi.org/10.1016/j.ygyno.2019.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moore RG, Brown AK, Miller MC, et al. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol. 2008;108(2):402–8. https://doi.org/10.1016/j.ygyno.2007.10.017.

    Article  CAS  PubMed  Google Scholar 

  37. Mor G, Visintin I, Lai Y, et al. Serum protein markers for early detection of ovarian cancer. Proc Nat Acad Sci. 2005;102(21):7677–82. https://doi.org/10.1073/pnas.0502178102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muinao T, Deka Boruah HP, Pal M. Multi-biomarker panel signature as the key to diagnosis of ovarian cancer. Heliyon. 2019;5(12):e02826. https://doi.org/10.1016/j.heliyon.2019.e02826.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer. 2016;15(1):12–34. https://doi.org/10.1186/s12943-016-0536-0.

    Article  CAS  Google Scholar 

  40. National Ovarian Cancer Coalition - NOCC Staff. Types and Stages - National Ovarian Cancer Coalition. Ovarian.org. Published 2021. https://www.ovarian.org/about-ovarian-cancer/what-is-ovarian-cancer/types-a-stages. (Accessed 22 Jan 2021)

  41. Nebgen DR, Lu KH, Bast RC. Novel approaches to ovarian cancer screening. Curr Oncol Rep. 2019;21(8):12–53. https://doi.org/10.1007/s11912-019-0816-0.

    Article  CAS  Google Scholar 

  42. Nosov V, Su F, Amneus M, et al. Validation of serum biomarkers for detection of early-stage ovarian cancer. Am J Obstet Gynecol. 2009;200(6):6391–5. https://doi.org/10.1016/j.ajog.2008.12.042.

    Article  CAS  Google Scholar 

  43. Pal MK, Rashid M, Bisht M. Multiplexed magnetic nanoparticle-antibody conjugates (MNPs-ABS) based prognostic detection of ovarian cancer biomarkers, CA-125, β-2M and ApoA1 using fluorescence spectroscopy with comparison of surface plasmon resonance (SPR) analysis. Biosens Bioelectron. 2015;73:146–52. https://doi.org/10.1016/j.bios.2015.05.051.

    Article  CAS  PubMed  Google Scholar 

  44. Paraskevaidi M, Ashton KM, Stringfellow HF, et al. Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma. Talanta. 2018;189:281–8. https://doi.org/10.1016/j.talanta.2018.06.084.

    Article  CAS  PubMed  Google Scholar 

  45. Patel KM, Tsui DWY. The translational potential of circulating tumour DNA in oncology. Clin Biochem. 2015;48(15):957–61. https://doi.org/10.1016/j.clinbiochem.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  46. Pelosof LC, Gerber DE. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc. 2010;85(9):838–54. https://doi.org/10.4065/mcp.2010.0099.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peng D, Xu T, Mason TJ, Wu W. A study of ovarian cancer biomarker amplification using ultrasound for early stage detection. Ultrasonics. 2014;54(2):451–4. https://doi.org/10.1016/j.ultras.2013.05.014.

    Article  CAS  PubMed  Google Scholar 

  48. Pinsky PF, Zhu CS. Building multi-marker algorithms for disease prediction–-the role of correlations among markers. Biomarker Insights. 2011;6:BMIS7513. https://doi.org/10.4137/bmi.s7513.

    Article  Google Scholar 

  49. Sarojini S, Tamir A, Lim H, et al. Early detection biomarkers for ovarian cancer. J Oncol. 2012;22:1–15. https://doi.org/10.1155/2012/709049.

    Article  CAS  Google Scholar 

  50. Simon I, Zhuo S, Corral L, et al. B7–H4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer. Can Res. 2006;66(3):1570–5. https://doi.org/10.1158/0008-5472.can-04-3550.

    Article  CAS  Google Scholar 

  51. Skates SJ, Horick N, Yu Y, et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125II, CA 15–3, CA 72–4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J Clin Oncol. 2004;22(20):4059–66. https://doi.org/10.1200/jco.2004.03.091.

    Article  PubMed  Google Scholar 

  52. Su F, Lang J, Kumar A, et al. Validation of candidate serum ovarian cancer biomarkers for early detection. Biomark Insight. 2007;2:369–75.

    Article  Google Scholar 

  53. Tcherkassova J, Abramovich C, Moro R, et al. Combination of CA125 and RECAF biomarkers for early detection of ovarian cancer. Tumor Biology. 2011;32(4):831–8. https://doi.org/10.1007/s13277-011-0186-1.

    Article  CAS  PubMed  Google Scholar 

  54. Visintin I, Feng Z, Longton G, et al. Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res. 2008;14(4):1065–72. https://doi.org/10.1158/1078-0432.ccr-07-1569.

    Article  CAS  PubMed  Google Scholar 

  55. Widschwendter M, Zikan M, Wahl B, et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. Genome Med. 2017;9:1–34. https://doi.org/10.1186/s13073-017-0500-7.

    Article  CAS  Google Scholar 

  56. Xiang H, Huang R, Cheng J, et al. Value of three-dimensional contrast-enhanced ultrasound in the diagnosis of small adnexal masses. Ultrasound Med Biol. 2013;39(5):761–8. https://doi.org/10.1016/j.ultrasmedbio.2012.11.008.

    Article  PubMed  Google Scholar 

  57. Yokoi A, Yoshioka Y, Hirakawa A, et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 2017;8(52):89811–23. https://doi.org/10.18632/oncotarget.20688.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yurkovetsky Z, Skates S, Lomakin A, et al. Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol. 2010;28(13):2159–66. https://doi.org/10.1200/jco.2008.19.2484.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang L, Chen Y, Wang K. Comparison of CA125, HE4, and ROMA index for ovarian cancer diagnosis. Curr Probl Cancer. 2019;43(2):135–44. https://doi.org/10.1016/j.currproblcancer.2018.06.001.

    Article  PubMed  Google Scholar 

  60. Zhang Z, Bast RC, Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Can Res. 2004;64(16):5882–90. https://doi.org/10.1158/0008-5472.can-04-0746.

    Article  CAS  Google Scholar 

  61. Zheng H, Zhang L, Zhao Y, et al. Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS ONE. 2013;8(11):e77853. https://doi.org/10.1371/journal.pone.0077853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Papanikolaou G, Gkouvatsos K, Pantopoulos K. Transferrin. Encycloped Signal Mole . 2018;4:5615–23. https://doi.org/10.1007/978-3-319-67199-4_101940.

    Article  Google Scholar 

  63. Robbins J. Transthyretin from discovery to now. Clin Chem Lab Med. 2002;5:40–112. https://doi.org/10.1515/cclm.2002.208.

    Article  Google Scholar 

  64. Wikipedia Contributors. ApoA-1 Milano. Wikipedia. Published December 30, 2020. https://en.wikipedia.org/wiki/ApoA-1_Milano#:~:text=5%20Subsequent%20Development-,Discovery,small%20village%20in%20northern%20Italy. (Accessed 28 Jan 2021)

  65. Smith JB, Stashwick C, Powell DJ. B7–H4 as a potential target for immunotherapy for gynecologic cancers: a closer look. Gynecol Oncol. 2014;134(1):181–9. https://doi.org/10.1016/j.ygyno.2014.03.553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ribatti D. From the discovery of vascular endothelial growth factor to the introduction of Avastin in clinical trials - an interview with Napoleone Ferrara. Int J Dev Biol. 2011;55(4–5):383–8. https://doi.org/10.1387/ijdb.103216dr.

    Article  Google Scholar 

  67. Simmons AR, Baggerly K, Bast RC. The emerging role of HE4 in the evaluation of epithelial ovarian and endometrial carcinomas. Oncology (Williston Park, NY). 2013;27(6):548–556. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085777/. (Accessed 28 Jan 2021)

  68. Wikipedia Contributors. Osteopontin. Wikipedia. Published January 4, 2021. https://en.wikipedia.org/wiki/Osteopontin. (Accessed 28 Jan 2021)

  69. Scholler N, Urban N. CA125 in ovarian cancer. Biomark Med. 2007;1(4):513–23. https://doi.org/10.2217/17520363.1.4.513.

    Article  CAS  PubMed  Google Scholar 

  70. Wikipedia Contributors. Carcinoembryonic antigen. Wikipedia. Published January 2, 2021. https://en.wikipedia.org/wiki/Carcinoembryonic_antigen. (Accessed 28 Jan 2021)

  71. Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168(1):93–103. https://doi.org/10.2353/ajpath.2006.050601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patidar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Gupta, A. & Patidar, S. Review of biomarker systems as an alternative for early diagnosis of ovarian carcinoma. Clin Transl Oncol 23, 1967–1978 (2021). https://doi.org/10.1007/s12094-021-02604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02604-x

Keywords

Navigation