Skip to main content

Advertisement

Log in

Dosage of anti-PD-1 monoclonal antibodies: a cardinal open question

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Discovery and clinical development of monoclonal antibodies with the ability to interfere in the regulation of the immune response have significantly changed the landscape of oncology in recent years. Among the active agents licensed by the regulatory agencies, nivolumab and pembrolizumab are paradigmatic as the most relevant ones according to the magnitude of available data derived from the extensive preclinical and clinical experience. Although in both cases the respective data sheets indicate well-defined dosage regimens, a review of the literature permits to verify the existence of many issues still unresolved about dosing the two agents, so it must be considered an open question of potentially important consequences, in which to work to improve the effectiveness and efficiency of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39:98–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee L, Gupta M, Sahasranaman S. Immune checkpoint inhibitors: an introduction to the next-generation cancer immunotherapy. J Clin Pharmacol. 2016;56:157–69.

    CAS  PubMed  Google Scholar 

  3. Postel-Vinay S, Aspeslagh S, Lanoy E, Robert C, Soria JC, Marabelle A. Challenges of phase 1 clinical trials evaluating immune checkpoint-targeted antibodies. Ann Oncol. 2016;27:214–24.

    CAS  PubMed  Google Scholar 

  4. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang C, Thudium KB, Han M, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2:846–56.

    CAS  PubMed  Google Scholar 

  6. Lindauer A, Valiathan CR, Mehta K, et al. Translational pharmacokinetic/pharmacodynamic modeling of tumor growth inhibition supports dose-range selection of the anti-PD-1 antibody pembrolizumab. CPT Pharmacomet Syst Pharmacol. 2017;6:11–20.

    CAS  Google Scholar 

  7. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18:153–67.

    CAS  PubMed  Google Scholar 

  8. Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017;23:4242–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong AC, Ma B. An update on the pharmacodynamics, pharmacokinetics, safety and clinical efficacy of nivolumab in the treatment of solid cancers. Expert Opin Drug Metab Toxicol. 2016;12:1255–61.

    CAS  PubMed  Google Scholar 

  11. Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother. 2017;66:551–64.

    CAS  PubMed  Google Scholar 

  12. Lee KW, Lee DH, Kang JH, et al. Phase I pharmacokinetic study of nivolumab in Korean patients with advanced solid tumors. Oncologist. 2018;23:155-e17.

    CAS  PubMed  Google Scholar 

  13. Desnoyer A, Broutin S, Delahousse J, Maritaz C, Blondel L, Mir O, Chaput N, Paci A. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 2, immune checkpoint inhibitor antibodies. Eur J Cancer. 2020;128:119–28.

    CAS  PubMed  Google Scholar 

  14. Freshwater T, Kondic A, Ahamadi M, et al. Evaluation of dosing strategy for pembrolizumab for oncology indications. J Immunother Cancer. 2017;5:43.

    PubMed  PubMed Central  Google Scholar 

  15. Elassaiss-Schaap J, Rossenu S, Lindauer A, et al. Using model-based “learn and confirm” to reveal the pharmacokinetics-pharmacodynamics relationship of pembrolizumab in the KEYNOTE-001 trial. CPT Pharmacomet Syst Pharmacol. 2017;6:21–8.

    CAS  Google Scholar 

  16. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacomet Syst Pharmacol. 2017;6:58–66.

    CAS  Google Scholar 

  17. Garrido MJ, Berraondo P, Trocóniz IF. Commentary on pharmacometrics for immunotherapy. CPT Pharmacomet Syst Pharmacol. 2017;6:8–10.

    CAS  Google Scholar 

  18. Gros A, Parkhurst MR, Tran E, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22:433–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Feng Y, Bajaj G, et al. Quantitative characterization of the exposure-response relationship for cancer immunotherapy: a case study of nivolumab in patients with advanced melanoma. CPT Pharmacomet Syst Pharmacol. 2017;6:40–4.

    Google Scholar 

  20. Ogungbenro K, Patel A, Duncombe R, Nuttall R, Clark J, Lorigan P. Dose rationalization of pembrolizumab and nivolumab using pharmacokinetic modeling and simulation and cost analysis. Clin Pharmacol Ther. 2018;103:582–90.

    CAS  PubMed  Google Scholar 

  21. Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–93.

    CAS  PubMed  Google Scholar 

  22. Fessas P, Lee H, Ikemizu S, Janowitz T. A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin Oncol. 2017;44:136–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Siu LL, Ivy SP, Dixon EL, Gravell AE, Reeves SA, Rosner GL. Challenges and opportunities in adapting clinical trial design for immunotherapies. Clin Cancer Res. 2017;23:4950–8.

    PubMed  PubMed Central  Google Scholar 

  24. de Greef R, Elassaiss-Schaap J, Chatterjee M, et al. Pembrolizumab: role of modeling and simulation in bringing a novel immunotherapy to patients with melanoma. CPT Pharmacomet Syst Pharmacol. 2017;6:5–7.

    Google Scholar 

  25. Chatterjee MS, Elassaiss-Schaap J, Lindauer A, et al. Population pharmacokinetic/pharmacodynamic modeling of tumor size dynamics in pembrolizumab-treated advanced melanoma. CPT Pharmacomet Syst Pharmacol. 2017;6:29–39.

    CAS  Google Scholar 

  26. Agrawal S, Feng Y, Roy A, Kollia G, Lestini B. Nivolumab dose selection: challenges, opportunities, and lessons learned for cancer immunotherapy. J Immunother Cancer. 2016;4:72.

    PubMed  PubMed Central  Google Scholar 

  27. Khushalani NI. Duration of anti-programmed death-1 therapy in advanced melanoma: how much of a good thing is enough? J Clin Oncol. 2018;36:1649–53.

    CAS  PubMed  Google Scholar 

  28. Salati M, Baldessari C, Cerbelli B, Botticelli A. Nivolumab in pretreated non-small cell lung cancer: continuing the immunolution. Transl Lung Cancer Res. 2018;7(Suppl 2):S91–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Robert C, Ribas A, Hamid O, et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Oncol. 2018;36:1668–74.

    CAS  PubMed  Google Scholar 

  30. Hamid O, Robert C, Daud A, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 2019;30:582–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao X, Suryawanshi S, Hruska M, et al. Assessment of nivolumab benefit-risk profile of a 240-mg flat dose relative to a 3-mg/kg dosing regimen in patients with advanced tumors. Ann Oncol. 2017;28:2002–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. de Lemos ML, Kung C, Waignein S. Efficacy of nivolumab four-weekly dosing schedule based on body weight. J Oncol Pharm Pract. 2019;25:961–3.

    PubMed  Google Scholar 

  33. Ratain MJ, Goldstein DA. Time is money: optimizing the scheduling of nivolumab. J Clin Oncol. 2018. https://doi.org/10.1200/JCO.18.00045 (Epub ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fujii T, Naing A, Rolfo C, Hajjar J. Biomarkers of response to immune checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol. 2018;130:108–20.

    PubMed  Google Scholar 

  35. Puszkiel A, Noé G, Boudou-Rouquette P, et al. Development and validation of an ELISA method for the quantification of nivolumab in plasma from non-small-cell lung cancer patients. J Pharm Biomed Anal. 2017;139:30–6.

    CAS  PubMed  Google Scholar 

  36. Basak E, Wijkhuis A, Mathijssen R, Koolen S, Scheurs M. Development of an ELISA to measure nivolumab and pembrolizumab serum concentrations. Ther Drug Monit. 2018;40:596–601.

    CAS  PubMed  Google Scholar 

  37. Irie K, Okada A, Yamasaki Y, et al. An LC-MS/MS method for absolute quantification of nivolumab in human plasma: application to clinical therapeutic drug monitoring. Ther Drug Monit. 2018;40:716–24.

    CAS  PubMed  Google Scholar 

  38. Centanni M, Moes D, Trocóniz I, Ciccolini J, van Hasselt J. Clinical pharmacokinetics and pharmacodynamics of immune checkpoint inhibitors. Clin Pharmacokinet. 2019;58:835–57.

    PubMed  PubMed Central  Google Scholar 

  39. Sureda M, Mata JJ, Catalán A, Escudero V, Martínez-Navarro E, Rebollo J. Therapeutic drug monitoring of nivolumab in routine clinical practice. A pilot study. Farm Hosp. 2020;44:81–6.

    PubMed  Google Scholar 

  40. Gormley NJ, Pazdur R. Immunotherapy combinations in multiple myeloma- known unknowns. N Engl J Med. 2018;379:1791–5.

    PubMed  Google Scholar 

  41. Hajjar J. Cancer immunotherapy for the immunosuppressed: Dissecting the conundrum of safety and efficacy. J Immunother Precis Oncol. 2019;2:53–4.

    Google Scholar 

  42. Shah M, Jizzini MN, Majzoub IE, Qdaisat A, Reyes-Gibby CC, Yeung SC. Safety of immune checkpoint blockade in patients with cancer and preexisting autoimmune diseases and/or chronic inflammatory disorders. J Immunother Precis Oncol. 2019;2:59–64.

    Google Scholar 

  43. Johnson DB, Sullivan RJ, Menzies AM. Immune checkpoint inhibitors in challenging populations. Cancer. 2017;123:1904–11.

    PubMed  Google Scholar 

  44. Peer C, Goldstein D, Goodell J, Nguyen R, Figg R, Ratain M. Opportunities for using in silico-based extended dosing regimens for monoclonal antibody immune checkpoint inhibitors. Br J Clin Pharmacol. 2020;86:1769–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Green A, Ohn J, Bach P. Review of current policy strategies to reduce US cancer drug costs. J Clin Oncol. 2019. https://doi.org/10.1200/JCO.19.01628 (Epub ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N/A.

Funding

N/A.

Author information

Authors and Affiliations

Authors

Contributions

MS has conceived the work and drafted the paper. EC has made substantial contributions to the design of the work and drafted the paper. JJM has substantively contributed to the design. VE-O has made substantial contributions to the design of the work and drafted the paper. EM-N has substantively revised the work. AC has substantively revised the work. JR has made substantial contributions and drafted the paper. All authors have approved the submitted version and are personally accountable for the author's own contributions and they ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Corresponding author

Correspondence to M. Sureda.

Ethics declarations

Conflict of interest

Manuel Sureda has received travel grants from Bristol Myers and MSD. Juan José Mata has received travel grants from Bristol Myers. The other authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sureda, M., Calvo, E., Mata, J.J. et al. Dosage of anti-PD-1 monoclonal antibodies: a cardinal open question. Clin Transl Oncol 23, 1511–1519 (2021). https://doi.org/10.1007/s12094-021-02563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02563-3

Keywords

Navigation