Skip to main content
Log in

Parasympathetic influences in cancer pathogenesis: further insights

  • Correspondence
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tibensky M, Mravec B. Role of the parasympathetic nervous system in cancer initiation and progression. Clin Transl Oncol. 2020. https://doi.org/10.1007/s12094-020-02465-w (Epub ahead of print).

    Article  PubMed  Google Scholar 

  2. Caygill CP, Knowles RL, Hall R. Increased risk of cancer mortality after vagotomy for peptic ulcer: a preliminary analysis. Eur J Cancer Prev. 1991;1(1):35–7.

    Article  CAS  Google Scholar 

  3. Ekbom A, Lundegårdh G, McLaughlin JK, Nyrén O. Relation of vagotomy to subsequent risk of lung cancer: population based cohort study. BMJ. 1998;316(7130):518–9.

    Article  CAS  Google Scholar 

  4. Nelson RL, Briley S, Vaz OP, Abcarian H. The effect of vagotomy and pyloroplasty on colorectal tumor induction in the rat. J Surg Oncol. 1992;51(4):281–6. https://doi.org/10.1002/jso.2930510416 (PMID: 1434662).

    Article  CAS  PubMed  Google Scholar 

  5. Partecke LI, Käding A, Trung DN, Diedrich S, Sendler M, Weiss F, et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget. 2017;8(14):22501–12.

    Article  Google Scholar 

  6. Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 2018;8(11):1458–73.

    Article  CAS  Google Scholar 

  7. Erin N, Zhao W, Bylander J, Chase G, Clawson G. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat. 2006;99(3):351–64.

    Article  CAS  Google Scholar 

  8. Kumaria A. Observations on neuroimmunomodulation as a novel therapeutic strategy in metastasis. Cancer Immunol Immunother. 2020;69(10):2163–4. https://doi.org/10.1007/s00262-020-02658-w (Epub 2020 Jul 7).

    Article  PubMed  Google Scholar 

  9. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62.

    Article  CAS  Google Scholar 

  10. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    Article  CAS  Google Scholar 

  11. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54.

    Article  CAS  Google Scholar 

  12. Sanders TH, Weiss J, Hogewood L, Chen L, Paton C, McMahan RL, Sweatt JD. Cognition-enhancing vagus nerve stimulation alters the epigenetic landscape. J Neurosci. 2019;39(18):3454–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002;1(8):477–82.

    Article  Google Scholar 

  14. Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002;59(6 Suppl 4):S3-14.

    Article  Google Scholar 

  15. Ben-Menachem E, Hamberger A, Hedner T, Hammond EJ, Uthman BM, Slater J, et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995;20(3):221–7.

    Article  CAS  Google Scholar 

  16. Hammond EJ, Uthman BM, Wilder BJ, Ben-Menachem E, Hamberger A, Hedner T, Ekman R. Neurochemical effects of vagus nerve stimulation in humans. Brain Res. 1992;583(1–2):300–3.

    Article  CAS  Google Scholar 

  17. Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532–8.

    Article  CAS  Google Scholar 

  18. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Nature. 2019;573(7775):539–45.

    Article  CAS  Google Scholar 

  19. Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature. 2017;549(7673):533–7.

    Article  Google Scholar 

  20. Zeng Q, Michael IP, Zhang P, Saghafinia S, Knott G, Jiao W, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573(7775):526–31. https://doi.org/10.1038/s41586-019-1576-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alessandrini F, Cristofaro I, Di Bari M, Zasso J, Conti L, Tata AM. The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. Int Immunopharmacol. 2015;29(1):105–9.

    Article  CAS  Google Scholar 

  22. Cristofaro I, Spinello Z, Matera C, Fiore M, Conti L, De Amici M, et al. Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochem Int. 2018;118:52–60.

    Article  CAS  Google Scholar 

  23. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol. 2014;817:115–33.

    Article  Google Scholar 

  24. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.

    Article  CAS  Google Scholar 

  25. Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574(7779):543–8. https://doi.org/10.1038/s41586-019-1644-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehrian-Shai R, Reichardt JKV, Harris CC, Toren A. The gut-brain axis, paving the way to brain cancer. Trends Cancer. 2019;5(4):200–7.

    Article  CAS  Google Scholar 

  27. Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 2018;15(9):1830.

    Article  Google Scholar 

  28. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359(6382):1366–70.

    Article  CAS  Google Scholar 

  29. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–80.

    Article  CAS  Google Scholar 

  30. Bashiardes S, Tuganbaev T, Federici S, Elinav E. The microbiome in anti-cancer therapy. Semin Immunol. 2017;32:74–81.

    Article  CAS  Google Scholar 

  31. Kenefick NJ, Emmanuel A, Nicholls RJ, Kamm MA. Effect of sacral nerve stimulation on autonomic nerve function. Br J Surg. 2003;90(10):1256–60.

    Article  CAS  Google Scholar 

  32. Carrington EV, Knowles CH. The influence of sacral nerve stimulation on anorectal dysfunction. Colorectal Dis. 2011;13(Suppl 2):5–9.

    Article  Google Scholar 

  33. Guo J, Jin H, Shi Z, Yin J, Pasricha T, Chen JDZ. Sacral nerve stimulation improves colonic inflammation mediated by autonomic-inflammatory cytokine mechanism in rats. Neurogastroenterol Motil. 2019;31(10):e13676.

    PubMed  Google Scholar 

  34. Erin N. Role of sensory neurons, neuroimmune pathways, and transient receptor potential vanilloid 1 (TRPV1) channels in a murine model of breast cancer metastasis. Cancer Immunol Immunother. 2020;69(2):307–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumaria.

Ethics declarations

Conflict of interest

There are no conflicts of interest with this work.

Ethical approval

This article does not contain any studies with human participant or animals performed by the author.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaria, A. Parasympathetic influences in cancer pathogenesis: further insights. Clin Transl Oncol 23, 1491–1493 (2021). https://doi.org/10.1007/s12094-020-02523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02523-3

Navigation