Skip to main content

Advertisement

Log in

A seven-nuclear receptor-based prognostic signature in breast cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Breast cancer (BRCA) is a malignant cancer that threatened the life of female with unsatisfactory prognosis. The aim of this study was to identify prognostic nuclear receptors (NRs) signature of BRCA.

Methods

BRCA patient samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Consensus clustering analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed to evaluate, select NRs as prognostic factors and build Risk Score model. GSEA analysis was explored to check signaling differences between High- and Low-Risk group. Nomogram model basing on age and Risk Score was established to predict the 1-, 3- and 5-year survival. Model performance was assessed by a time-dependent receiver operating characteristic (ROC) curve and calibration plot. CIBERSORT, ESTIMATE and TIMER algorithm were introduced to evaluate the immune landscape.

Results

NR3C1, NR4A3, THRA, RXRG, NR2F6, NR1D2 and RORB were optimized as a prognostic signature for BRCA. This seven-NR-based Risk Score could effectively predict overall survival status. The area under the curve (AUC) of 1-, 3- and 5-year overall survival are 0.702, 0.734 and 0.722 in TCGA training cohort, and 0.630, 0.721 and 0.823 in GEO validation cohort, respectively. Calibration plot demonstrated satisfactory agreement between predictive and observed outcomes. Nomogram model worked well on predicting survival probabilities. Multiple cancer-related pathways were highly enriched in High-Risk group. High- and Low-Risk groups showed significant differed immune cell infiltration. There exists an obvious connection between Risk Score and immune checkpoints LAG3, PD1 and TIM3.

Conclusion

The seven-NR-based Risk Score represents a promising signature for estimating overall survival in patients with BRCA, and is correlated with the immune microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G. Breast cancer. Lancet. 2005;365(9472):1727–41.

    PubMed  Google Scholar 

  2. Fahad UM. Breast cancer: current perspectives on the disease status. Adv Exp Med Biol. 2019;1152:51–64.

    Google Scholar 

  3. Scully OJ, Bay BH, Yip G, Yu Y. Breast cancer metastasis. Cancer Genomics Proteomics. 2012;9(5):311–20.

    CAS  PubMed  Google Scholar 

  4. Yousefi M, Nosrati R, Salmaninejad A, Dehghani S, Shahryari A, Saberi A. Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol (Dordr). 2018;41(2):123–40.

    CAS  Google Scholar 

  5. Ma R, Feng Y, Lin S, Chen J, Lin H, Liang X, et al. Mechanisms involved in breast cancer liver metastasis. J Transl Med. 2015;13:64.

    PubMed  PubMed Central  Google Scholar 

  6. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Parris TZ. Pan-cancer analyses of human nuclear receptors reveal transcriptome diversity and prognostic value across cancer types. Sci Rep. 2020;10(1):1873.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Millard CJ, Watson PJ, Fairall L, Schwabe JW. An evolving understanding of nuclear receptor coregulator proteins. J Mol Endocrinol. 2013;51(3):T23-36.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci. 2017;74(22):4097–120.

    CAS  PubMed  Google Scholar 

  10. Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer - uncovering new and evolving roles through genomic analysis. Nat Rev Genet. 2018;19(3):160–74.

    CAS  PubMed  Google Scholar 

  11. Escriva H, Delaunay F, Laudet V. Ligand binding and nuclear receptor evolution. BioEssays. 2000;22(8):717–27.

    CAS  PubMed  Google Scholar 

  12. Doan TB, Eriksson NA, Graham D, Funder JW, Simpson ER, Kuczek ES, et al. Breast cancer prognosis predicted by nuclear receptor-coregulator networks. Mol Oncol. 2014;8(5):998–1013.

  13. Leake RE, Laing L, McArdle C, Smith DC. Soluble and nuclear oestrogen receptor status in human breast cancer in relation to prognosis. Br J Cancer. 1981;43(1):67–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kittler R, Zhou J, Hua S, Ma L, Liu Y, Pendleton E, et al. A comprehensive nuclear receptor network for breast cancer cells. Cell Rep. 2013;3(2):538–51.

    CAS  PubMed  Google Scholar 

  15. Na H, Han J, Ka NL, Lee MH, Choi YL, Shin YK, et al. High expression of NR1D1 is associated with good prognosis in triple-negative breast cancer patients treated with chemotherapy. Breast Cancer Res. 2019;21(1):127.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huss L, Butt ST, Borgquist S, Elebro K, Sandsveden M, Rosendahl A, et al. Vitamin D receptor expression in invasive breast tumors and breast cancer survival. Breast Cancer Res. 2019;21(1):84.

    PubMed  PubMed Central  Google Scholar 

  17. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.

    CAS  PubMed  Google Scholar 

  18. Shagufta AI. Tamoxifen a pioneering drug: an update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143:515–31.

    CAS  PubMed  Google Scholar 

  19. Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenetics. 2019;11(1):123.

    PubMed  PubMed Central  Google Scholar 

  20. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56(2):337–44.

    CAS  PubMed  Google Scholar 

  21. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hopken UE, Rehm A. Targeting the tumor microenvironment of leukemia and lymphoma. Trends Cancer. 2019;5(6):351–64.

    PubMed  Google Scholar 

  23. Flister MJ, Bergom C. Genetic modifiers of the breast tumor microenvironment. Trends Cancer. 2018;4(6):429–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Priedigkeit N, Watters RJ, Lucas PC, Basudan A, Bhargava R, Horne W, et al. Exome-capture RNA sequencing of decade-old breast cancers and matched decalcified bone metastases. JCI Insight. 2017;2(17).

  25. Alonso MH, Ausso S, Lopez-Doriga A, Cordero D, Guino E, Sole X, et al. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component. Br J Cancer. 2017;117(3):421–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jia D, Li S, Li D, Xue H, Yang D, Liu Y. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging (Albany NY). 2018;10(4):592–605.

    CAS  Google Scholar 

  27. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Long J, Lin J, Wang A, Wu L, Zheng Y, Yang X, et al. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy. J Hematol Oncol. 2017;10(1):146.

    PubMed  PubMed Central  Google Scholar 

  29. Sanghani M, Truong PT, Raad RA, Niemierko A, Lesperance M, Olivotto IA, et al. Validation of a web-based predictive nomogram for ipsilateral breast tumor recurrence after breast conserving therapy. J Clin Oncol. 2010;28(5):718–22.

    PubMed  PubMed Central  Google Scholar 

  30. Alco G, Igdem S, Okkan S, Dincer M, Sarsenov D, Ilgun AS, et al. Replacement of the tumor bed following oncoplastic breast-conserving surgery with immediate latissimus dorsi mini-flap. Mol Clin Oncol. 2016;5(4):365–71.

    PubMed  PubMed Central  Google Scholar 

  31. Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol. 2018;52(Pt 1):56–73.

    CAS  PubMed  Google Scholar 

  32. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.

    CAS  PubMed  Google Scholar 

  33. Aggelis V, Johnston SRD. Advances in endocrine-based therapies for estrogen receptor-positive metastatic breast cancer. Drugs. 2019;79(17):1849–66.

    CAS  PubMed  Google Scholar 

  34. Muscat GE, Eriksson NA, Byth K, Loi S, Graham D, Jindal S, et al. Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol Endocrinol. 2013;27(2):350–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiang Z, Huang X, Wang J, Zhang J, Ji J, Yan R, et al. Cross-database analysis reveals sensitive biomarkers for combined therapy for ERBB2+ gastric cancer. Front Pharmacol. 2018;9:861.

    PubMed  PubMed Central  Google Scholar 

  36. Sulli G, Rommel A, Wang X, Kolar MJ, Puca F, Saghatelian A, et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 2018;553(7688):351–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-Lopez JC, Morell M. An overview of the polymorphisms of circadian genes associated with endocrine cancer. Front Endocrinol (Lausanne). 2019;10:104.

    Google Scholar 

  38. Yu M, Li W, Wang Q, Wang Y, Lu F. Circadian regulator NR1D2 regulates glioblastoma cell proliferation and motility. Oncogene. 2018;37(35):4838–53.

    CAS  PubMed  Google Scholar 

  39. Tong H, Liu X, Li T, Qiu W, Peng C, Shen B, et al. NR1D2 accelerates hepatocellular carcinoma progression by driving the epithelial-to-mesenchymal transition. Onco Targets Ther. 2020;13:3931–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. De Mei C, Ercolani L, Parodi C, Veronesi M, Lo Vecchio C, Bottegoni G, et al. Dual inhibition of REV-ERBbeta and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. Oncogene. 2015;34(20):2597–608.

    PubMed  Google Scholar 

  41. Mocellin S, Tropea S, Benna C, Rossi CR. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies. BMC Med. 2018;16(1):20.

    PubMed  PubMed Central  Google Scholar 

  42. Joseph C, Al-Izzi S, Alsaleem M, Kurozumi S, Toss MS, Arshad M, et al. Retinoid X receptor gamma (RXRG) is an independent prognostic biomarker in ER-positive invasive breast cancer. Br J Cancer. 2019;121(9):776–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Snider H, Villavarajan B, Peng Y, Shepherd LE, Robinson AC, Mueller CR. Region-specific glucocorticoid receptor promoter methylation has both positive and negative prognostic value in patients with estrogen receptor-positive breast cancer. Clin Epigenetics. 2019;11(1):155.

    PubMed  PubMed Central  Google Scholar 

  44. Scimeca M, Urbano N, Bonfiglio R, Duggento A, Toschi N, Schillaci O, et al. Novel insights into breast cancer progression and metastasis: a multidisciplinary opportunity to transition from biology to clinical oncology. Biochim Biophys Acta Rev Cancer. 2019;1872(1):138–48.

    CAS  PubMed  Google Scholar 

  45. Huang R, Zong X. Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: mechanisms in cancer progression. Crit Rev Oncol Hematol. 2017;115:13–22.

    PubMed  Google Scholar 

  46. Disis ML, Stanton SE. Immunotherapy in breast cancer: an introduction. Breast. 2018;37:196–9.

    PubMed  Google Scholar 

  47. Hammerl D, Smid M, Timmermans AM, Sleijfer S, Martens JWM, Debets R. Breast cancer genomics and immuno-oncological markers to guide immune therapies. Semin Cancer Biol. 2018;52(Pt 2):178–88.

    CAS  PubMed  Google Scholar 

  48. Blackley EF, Loi S. Targeting immune pathways in breast cancer: review of the prognostic utility of TILs in early stage triple negative breast cancer (TNBC). Breast. 2019;48(Suppl 1):S44–8.

    PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Human and animal rights

Not applicable.

Informend Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12094_2020_2517_MOESM1_ESM.tif

Figure S1 GSEA analysis identified KEGG signaling pathways enriched between High- and Low- Risk group. The ECM-reporter interaction (A), glycolysis gluconeogenesis (B), pathways in cancer (C), regulation of actin cytoskeleton (D) and Wnt signaling pathway (E) were upregulated in High-Risk group compared with the Low-Risk group. The Oxidative phosphorylation (F) and proteasome pathway (G) were suppressed (TIF 11851 KB)

12094_2020_2517_MOESM2_ESM.tif

Figure S2 TIMER analysis determined infiltration of immune cells. The infiltration levels of Macrophage (A), CD4 T cells (B) and CD8 cells (C) in TCGA patient samples (TIF 12628 KB)

12094_2020_2517_MOESM3_ESM.tif

Figure S3 ESTIMATE analysis evaluated the immune score. ESTIMATE algorithm was conducted using “estimate” R package to evaluate the ESTIMATE score (A), immune score (B), stromal score (C) and tumor purity (D) of High- and Low-Risk group (TIF 13026 KB)

Supplementary file4 (XLSX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Chen, W., Kang, X. et al. A seven-nuclear receptor-based prognostic signature in breast cancer. Clin Transl Oncol 23, 1292–1303 (2021). https://doi.org/10.1007/s12094-020-02517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02517-1

Keywords

Navigation