Skip to main content
Log in

Genetic predisposition to fetal and neonatal cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Neonatal tumors represent an extremely rare and heterogeneous disease with an unknown etiology. Due to its early onset, it has been proposed that genetic factors could play a critical role; however, germline genetic analysis is not usually performed in neonatal cancer patients

Patients and methods

To improve the identification of cancer genetic predisposition syndromes, we retrospectively review clinical characteristics in 45 patients with confirmed tumor diagnosis before 28 days of age, and we carried out germline genetic analysis in 20 patients using next-generation sequencing and directed sequencing.

Results

The genetic studies did not find any germline mutation except patients diagnosed with bilateral retinoblastoma who harbored RB1 germline mutations.

Conclusions

Our results suggest that genetic factors have almost no higher impact in most neonatal tumors. However, since the heterogeneity of the tumors and the small sample size analyzed, we recommend complementary and centralized germline studies to discard the early onset as an additional criterion to take into account to improve the identification of cancer genetic predisposition syndromes in neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Isaacs H Jr. Congenital and neonatal malignant tumors. A 28-year experience at Children’s Hospital of Los Angeles. Am J Pediatr Hematol/oncol. 1987;9(2):121–9.

    Article  Google Scholar 

  2. Moore SW. Neonatal tumours. Pediatr Surg Int. 2013;29(12):1217–29. https://doi.org/10.1007/s00383-013-3424-3.

    Article  CAS  PubMed  Google Scholar 

  3. Moore SW, Satge D, Sasco AJ, Zimmermann A, Plaschkes J. The epidemiology of neonatal tumours. Report of an international working group. Pediatr Surg Int. 2003;19(7):509–19. https://doi.org/10.1007/s00383-003-1048-8.

    Article  CAS  PubMed  Google Scholar 

  4. Gurney JG, Ross JA, Wall DA, Bleyer WA, Severson RK, Robison LL. Infant cancer in the US: histology-specific incidence and trends, 1973 to 1992. J Pediatr Hematol Oncol. 1997;19(5):428–32.

    Article  CAS  PubMed  Google Scholar 

  5. Parkes SE, Muir KR, Southern L, Cameron AH, Darbyshire PJ, Stevens MC. Neonatal tumours: a thirty-year population-based study. Med Pediatr Oncol. 1994;22(5):309–17.

    Article  CAS  PubMed  Google Scholar 

  6. Vasilatou-Kosmidis H. Cancer in neonates and infants. Med Pediatr Oncol. 2003;41(1):7–9. https://doi.org/10.1002/mpo.10153.

    Article  PubMed  Google Scholar 

  7. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85. https://doi.org/10.1056/NEJM200007133430201.

    Article  CAS  PubMed  Google Scholar 

  8. Orbach D, Sarnacki S, Brisse HJ, Gauthier-Villars M, Jarreau PH, Tsatsaris V, et al. Neonatal cancer. Lancet Oncol. 2013;14(13):e609–20. https://doi.org/10.1016/S1470-2045(13)70236-5.

    Article  PubMed  Google Scholar 

  9. Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–7. https://doi.org/10.1038/nature25480.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46. https://doi.org/10.1056/NEJMoa1508054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang W, Brohl AS, Patidar R, Sindiri S, Shern JF, Wei JS, et al. MultiDimensional ClinOmics for precision therapy of children and adolescent young adults with relapsed and refractory cancer: a report from the center for cancer research. Clin Cancer Res. 2016;22(15):3810–20. https://doi.org/10.1158/1078-0432.CCR-15-2717.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K, et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2016. https://doi.org/10.1001/jamaoncol.2015.5699.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jongmans MC, Loeffen JL, Waanders E, Hoogerbrugge PM, Ligtenberg MJ, Kuiper RP, et al. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016;59(3):116–25. https://doi.org/10.1016/j.ejmg.2016.01.008.

    Article  PubMed  Google Scholar 

  14. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Broad Institute G. “Picard Toolkit.”. 2019. http://broadinstitute.github.io/picard/.

  16. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8. https://doi.org/10.1038/ng.806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92. https://doi.org/10.4161/fly.19695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pedersen BS, Layer RM, Quinlan AR. Vcfanno: fast, flexible annotation of genetic variants. Genome Biol. 2016;17(1):118. https://doi.org/10.1186/s13059-016-0973-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peris-Bonet RPE, Ríos I, Sayas N, Valero S. Cáncer Infantil en España. Estadísticas 1980–2015. Registro Español de Tumores Infantiles (RETI-SEHOP). Valencia: Univesitat de València; 2016.

    Google Scholar 

  20. Lopez Almaraz R, Villafruela Alvarez C, Rodriguez Luis J, Domenech Martinez E. Neonatal neoplasms: a single-centre experience. An Pediatr. 2006;65(6):529–35.

    Article  CAS  Google Scholar 

  21. Birch JM, Blair V. The epidemiology of infant cancers. Br J Cancer Suppl. 1992;18:S2–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Borch K, Jacobsen T, Olsen JH, Hirsch FR, Hertz H. Neonatal cancer in Denmark 1943-1985. Ugeskr Laeger. 1994;156(2):176–9.

    CAS  PubMed  Google Scholar 

  23. Isaacs H Jr. Fetal and neonatal neuroblastoma: retrospective review of 271 cases. Fetal Pediatr Pathol. 2007;26(4):177–84. https://doi.org/10.1080/15513810701696890.

    Article  PubMed  Google Scholar 

  24. Minard-Colin V, Orbach D, Martelli H, Bodemer C, Oberlin O. Soft tissue tumors in neonates. Arch Pediatr. 2009;16(7):1039–48. https://doi.org/10.1016/j.arcped.2009.03.005.

    Article  CAS  PubMed  Google Scholar 

  25. Veal GJ, Boddy AV. Chemotherapy in newborns and preterm babies. Semin Fetal Neonatal Med. 2012;17(4):243–8. https://doi.org/10.1016/j.siny.2012.03.002.

    Article  PubMed  Google Scholar 

  26. Littman P, D’Angio GJ. Radiation therapy in the neonate. Am J Pediatr Hematol Oncol. 1981;3(3):279–85.

    CAS  PubMed  Google Scholar 

  27. Caldwell KJ, De La Cuesta E, Morin C, Pappo A, Helmig S. A newborn with a large NTRK fusion positive infantile fibrosarcoma successfully treated with larotrectinib. Pediatr Blood Cancer. 2020. https://doi.org/10.1002/pbc.28330.

    Article  PubMed  Google Scholar 

  28. Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, et al. Retinoblastoma. Nature reviews Disease primers. 2015;1:15021. https://doi.org/10.1038/nrdp.2015.21.

    Article  PubMed  Google Scholar 

  29. Porter CC. Germ line mutations associated with leukemias. Hematology American Society of Hematology Education Program. 2016;2016(1):302–8. https://doi.org/10.1182/asheducation-2016.1.302.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aretz S, Koch A, Uhlhaas S, Friedl W, Propping P, von Schweinitz D, et al. Should children at risk for familial adenomatous polyposis be screened for hepatoblastoma and children with apparently sporadic hepatoblastoma be screened for APC germline mutations? Pediatr Blood Cancer. 2006;47(6):811–8. https://doi.org/10.1002/pbc.20698.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the CRIS Cancer Foundation (http://criscancer.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pérez-Martínez.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

Research was approved by the ethics committee of La Paz University Hospital.

Informed consent

Informed consent was obtained from all individual participants included on the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escudero, A., Ruz-Caracuel, B., Bueno, D. et al. Genetic predisposition to fetal and neonatal cancer. Clin Transl Oncol 23, 1179–1184 (2021). https://doi.org/10.1007/s12094-020-02508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02508-2

Keywords

Navigation