Skip to main content

Advertisement

Log in

The free amino acid profiles and metabolic biomarkers of predicting the chemotherapeutic response in advanced sarcoma patients

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Metabolomics is an emerging field in cancer research. Plasma free amino acid profiles (PFAAs) have shown different features in various cancers, but the characteristic in advanced sarcoma remains unclear. We aimed to uncover the specific PFAAs in advanced sarcoma and to find the relationship between the altering of PFAAs and response to chemotherapy.

Patients and methods

We analyzed the differences in PFAAs between 23 sarcoma patients and 30 healthy subjects basing on liquid chromatography–tandem mass spectrometry (LC–MS/MS). Then, we compared the dynamics of PFAAs after chemotherapy between improvement group and deterioration group.

Results

We identified seven biological differential amino acids and four pathways which were perturbed in the sarcoma patients compared with healthy subjects. After one cycle chemotherapy, the levels of γ-aminobutyric acid (GABA) and carnosine (Car) decreased significantly in the improvement group but not in deterioration group. The levels of α-aminobutyric acid (Abu) increased significantly in the deterioration group but not in the improvement group.

Conclusion

Our study suggests the potential specific PFAAs in sarcoma patients. The unusual amino acids and metabolic pathways may provide ideas for clinical drugs targeting therapy. Three amino acids including Car, GABA and Abu may be metabolic biomarkers playing a role in dynamic monitoring of the therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Burningham Z, Spector L, Schiffman JD. The epidemiology of sarcoma. Clin Sarcoma Res. 2012;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bastiaannet E, Groen H, Jager PL, Cobben DC, van der Graaf WT, Vaalburg W, Hoekstra HJ. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev. 2004;30:83–101.

    Article  CAS  PubMed  Google Scholar 

  4. Schaefer IM, Cote GM, Hornick JL. Contemporary sarcoma diagnosis, genetics, and genomics. J Clin Oncol. 2018;36:101–10.

    Article  CAS  PubMed  Google Scholar 

  5. Skubitz KM, D’Adamo DR. Sarcoma. Mayo Clin Proc. 2007;82:1409–32.

    Article  CAS  PubMed  Google Scholar 

  6. Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996;14:1679–89.

    Article  CAS  PubMed  Google Scholar 

  7. Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–94.

    Article  CAS  PubMed  Google Scholar 

  8. Dancsok AR, Asleh-Aburaya K, Nielsen TO. Advances in sarcoma diagnostics and treatment. Oncotarget. 2017;8:7068–93.

    Article  PubMed  Google Scholar 

  9. Molina-Ortiz D, Torres-Zarate C, Cardenas-Cardos R, Palacios-Acosta JM, Hernandez-Arrazola D, Shalkow-Klincovstein J, Diaz-Diaz E, Vences-Mejia A. MDR1 not CYP3A4 gene expression is the predominant mechanism of innate drug resistance in pediatric soft tissue sarcoma patients. Cancer Biomark. 2018;22:317–24.

    Article  CAS  PubMed  Google Scholar 

  10. Leichtle AB, Nuoffer JM, Ceglarek U, Kase J, Conrad T, Witzigmann H, Thiery J, Fiedler GM. Serum amino acid profiles and their alterations in colorectal cancer. Metabolomics. 2012;8:643–53.

    Article  CAS  PubMed  Google Scholar 

  11. Proenza AM, Oliver J, Palou A, Roca P. Breast and lung cancer are associated with a decrease in blood cell amino acid content. J Nutr Biochem. 2003;14:133–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lai HS, Lee JC, Lee PH, Wang ST, Chen WJ. Plasma free amino acid profile in cancer patients. Semin Cancer Biol. 2005;15:267–76.

    Article  CAS  PubMed  Google Scholar 

  13. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, Kimura H, Imamura F, Moriyama M, Ikeda I, Chiba A, Oshita F, Imaizumi A, Yamamoto H, Miyano H, Horimoto K, Tochikubo O, Mitsushima T, Yamakado M, Okamoto N. Plasma free amino acid profiling of five types of cancer patients and its application for early detectio. PLoS ONE. 2011;6:e24143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu Y, Chen T, Fu S, Sun X, Wang L, Wang J, Lu Y, Ding S, Ruan G, Teng L, Wang M. Perioperative dynamics and significance of amino acid profiles in patients with cancer. J Transl Med. 2015;13:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6:743–60.

    Article  CAS  PubMed  Google Scholar 

  16. Harder U, Koletzko B, Peissner W. Quantification of 22 plasma amino acids combining derivatization and ion-pair LC-MS/MS. J Chromatogr B. 2011;879:495–504.

    Article  CAS  Google Scholar 

  17. Kubota A, Meguid MM, Hitch DC. Amino acid profiles correlate diagnostically with organ site in three kinds of malignant tumors. Cancer. 1992;69:2343–8.

    Article  CAS  PubMed  Google Scholar 

  18. Clarke EF, Lewis AM, Waterhouse C. Peripheral amino acid levels in patients with cancer. Cancer. 1978;42:2909–13.

    Article  CAS  PubMed  Google Scholar 

  19. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistanc. Cell Metab. 2009;9:311–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolis. Int J Mol Sci. 2018;19:954.

    Article  PubMed Central  CAS  Google Scholar 

  21. Lee JH, Cho YR, Kim JH, Kim J, Nam HY, Kim SW, Son J. Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Exp Mol Med. 2019;51:1–11.

    PubMed  PubMed Central  Google Scholar 

  22. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, Tayyari F, McSkimming D, Kannan N, Tojo A, Edison AS, Ito T. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545:500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fischer JE, Chance WT. Total parenteral nutrition, glutamine, and tumor growth. JPEN J Parenter Enteral Nutr. 1990;14:86S–9S.

    Article  CAS  PubMed  Google Scholar 

  24. Norton JA, Gorschboth CM, Wesley RA, Burt ME, Brennan MF. Fasting plasma amino acid levels in cancer patient. Cancer. 1985;56:1181–6.

    Article  CAS  PubMed  Google Scholar 

  25. Min L, Choy E, Tu C, Hornicek F, Duan Z. Application of metabolomics in sarcoma: from biomarkers to therapeutic targets. Crit Rev Oncol Hematol. 2017;116:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Phillips MM, Sheaff MT, Szlosarek PW. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat. 2013;45:251–62.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem. 2003;270:1887–99.

    Article  CAS  PubMed  Google Scholar 

  28. Dillon BJ, Prieto VG, Curley SA, Curley A, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer. 2004;100:826–33.

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi E, Masuda M, Nakayama R, Ichikawa H, Satow R, Shitashige M, Honda K, Yamaguchi U, Shoji A, Tochigi N, Morioka H, Toyama Y, Hirohashi S, Kawai A, Yamada T. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther. 2010;9:535–44.

    Article  CAS  PubMed  Google Scholar 

  30. Huang HY, Wu WR, Wang YH, Wang JW, Fang FM, Tsai JW, Li SH, Hung HC, Yu SC, Lan J, Shiue YL, Hsing CH, Chen LT, Li CF. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res. 2013;19:2861–72.

    Article  CAS  PubMed  Google Scholar 

  31. Closs EI, Scheld JS, Sharafi M, Forstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol. 2000;57:68–74.

    CAS  PubMed  Google Scholar 

  32. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoon JK, Kim DH, Koo JS. Implications of differences in expression of sarcosine metabolism-related proteins according to the molecular subtype of breast cancer. J Transl Med. 2014;12:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jentzmik F, Stephan C, Lein M, Miller K, Kamlage B, Bethan B, Kristiansen G, Jung K. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J Urol. 2011;185:706–11.

    Article  CAS  PubMed  Google Scholar 

  35. Shajahan-Haq A, Cheema M, Clarke R. Application of metabolomics in drug resistant breast cancer research. Metabolites. 2015;5:100–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Al-Zoughbi W, Huang J, Paramasivan GS, Till H, Pichler M, Guertl-Lackner B, Hoefler G. Tumor macroenvironment and metabolism. Semin Oncol. 2014;41:281–95.

    Article  PubMed  CAS  Google Scholar 

  37. Tan GG, Zhao BB, Li YQ, Liu X, Zou ZL, Wan J, Yao Y, Xiong H, Wang YY. Pharmacometabolomics identifies dodecanamide and leukotriene B4 dimethylamide as a predictor of chemosensitivity for patients with acute myeloid leukemia treated with cytarabine and anthracycline. Oncotarget. 2017;8:88697–707.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Man TK, Chintagumpala M, Visvanathan J, Shen J, Perlaky L, Hicks J, Johnson M, Davino N, Murray J, Helman L, Meyer W, Triche T, Wong KK, Lau CC. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res. 2005;65:8142–50.

    Article  CAS  PubMed  Google Scholar 

  39. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93:1803–45.

    Article  CAS  PubMed  Google Scholar 

  40. Gaunitz F, Hipkiss AR. Carnosine and cancer: a perspective. Amino Acids. 2012;43:135–42.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z, Miao L, Wu X, Liu G, Peng Y, Xin X, Jiao B, Kong X. Carnosine inhibits the proliferation of human gastric carcinoma cells by retarding Akt/mTOR/p70S6K signaling. J Cancer. 2014;5:382–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bao Y, Ding S, Cheng J, Liu Y, Wang B, Xu H, Shen Y, Lyu J. Carnosine inhibits the proliferation of human cervical gland carcinoma cells through inhibiting both mitochondrial bioenergetics and glycolysis pathways and retarding cell cycle progression. Integr Cancer Ther. 2018;17:80–91.

    Article  CAS  PubMed  Google Scholar 

  43. Hwang B, Shin SS, Song JH, Choi YH, Kim WJ, Moon SK. Carnosine exerts antitumor activity against bladder cancers in vitro and in vivo via suppression of angiogenesis. J Nutr Biochem. 2019;74:108230.

    Article  CAS  PubMed  Google Scholar 

  44. Andersson AC, Henningsson S, Jarhult J. Diamine oxidase activity and gamma-aminobutyric acid formation in medullary carcinoma of the thyroid. Agents Actions. 1980;10:299–301.

    Article  CAS  PubMed  Google Scholar 

  45. Nicholson-Guthrie CS, Guthrie GD, Sutton GP, Baenziger JC. Urine GABA levels in ovarian cancer patients: elevated GABA in malignancy. Cancer Lett. 2001;162:27–30.

    Article  CAS  PubMed  Google Scholar 

  46. Kleinrok Z, Matuszek M, Jesipowicz J, Matuszek B, Opolski A, Radzikowski C. GABA content and GAD activity in colon tumors taken from patients with colon cancer or from xenografted human colon cancer cells growing as s.c. tumors in athymic nu/nu mice. J Physiol Pharmacol. 1998;49:303–10.

    CAS  PubMed  Google Scholar 

  47. Mazurkiewicz M, Opolski A, Wietrzyk J, Radzikowski C, Kleinrok Z. GABA level and GAD activity in human and mouse normal and neoplastic mammary gland. J Exp Clin Cancer Res. 1999;18:247–53.

    CAS  PubMed  Google Scholar 

  48. Joseph J, Niggemann B, Zaenker KS, Entschladen F. The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 2002;62:6467–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Natural Science Foundation of China (No. 81872264).

Author information

Authors and Affiliations

Authors

Contributions

YQ was responsible for conception and supervision. BJ and WW prepared the manuscript. WW, SL, YL and LS interpreted and analyzed data. BJ revised the important intellectual content. YG and FG provided technical support for plasma testing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

The content and processes of the study have been reviewed and approved by the Ethics Committee of Zhengzhou University which is guided by international and national ethical requirements. In compliance with the Declaration of Helsinki, patient data were maintained with strict confidentiality.

Informed consent

Patients were informed in advance before taking blood samples, and all patients were informed of the treatment process and signed informed consent documents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Wang, W., Lin, S. et al. The free amino acid profiles and metabolic biomarkers of predicting the chemotherapeutic response in advanced sarcoma patients. Clin Transl Oncol 22, 2213–2221 (2020). https://doi.org/10.1007/s12094-020-02494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02494-5

Keywords

Navigation