Skip to main content

Advertisement

Log in

Research progress of tumor microenvironment and tumor-associated macrophages

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer is a health issue causing utmost concern and continuing to be one of the leading causes of mortality worldwide. Effective tumor eradication methods that will improve the prognosis and prolong human life are an important topic in modern medicine. Increasing amounts of evidence indicate that the tumor microenvironment plays a significant role in tumor development and migration. Macrophages are important immune cells that commonly infiltrate the tumor microenvironment. Several studies found that macrophages play different roles in the process of cancer development. This article focuses on the tumor microenvironment and the generation, classification, and function of tumor-associated macrophages as well as their significance for tumor immunotherapy and other aspects, it summarizes nearly 10 years of tumor microenvironment and tumor-associated macrophage research, providing a novel insight for tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TAMs:

Tumor-associated macrophage

ECM:

Extracellular matrix

α-SMA:

Alpha-smooth muscle actin

MMPS:

Matrix metalloproteinases

CAFs:

Cancer-associated fibroblasts

TEMs:

Tumor endothelial markers

MDSCs:

Myeloid-derived suppressor cells

References

  1. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8. https://doi.org/10.1038/nrc1098.

    Article  CAS  PubMed  Google Scholar 

  2. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  3. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25(1):30–8. https://doi.org/10.1016/j.tig.2008.10.012.

    Article  CAS  PubMed  Google Scholar 

  4. Hede K. Environmental protection: studies highlight importance of tumor microenvironment. J Natl Cancer I. 2004;96(15):1120–1. https://doi.org/10.1093/jnci/96.15.1120.

    Article  Google Scholar 

  5. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12. https://doi.org/10.1038/onc.2008.271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  7. De Wever O, Van Bockstal M, Mareel M, Hendrix A, Bracke M. Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Semin Cancer Biol. 2014;25:33–46. https://doi.org/10.1016/j.semcancer.2013.12.009.

    Article  CAS  PubMed  Google Scholar 

  8. Bergamaschi A, Tagliabue E, Srlie T, Naume B, Triulzi T, Orlandi R, Russnes HG, Nesland JM, Tammi R, Auvinen P, Kosma VM, Ménard S, Børresen-Dale AL. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214(3):357–67. https://doi.org/10.1002/path.2278.

    Article  CAS  PubMed  Google Scholar 

  9. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11(1):R7. https://doi.org/10.1186/bcr2222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl J Med. 1986;315(26):1650–9. https://doi.org/10.1158/2326-6066.CIR-14-0209.

    Article  CAS  PubMed  Google Scholar 

  11. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. https://doi.org/10.1038/nature01322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200(4):429–47. https://doi.org/10.1002/path.1398.

    Article  CAS  PubMed  Google Scholar 

  13. Nazareth MR, Broerick L, Simpson-Abelson MR, Kelleher RJ Jr, Yokota SJ, Bankert RB. Charaterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol. 2007;178(9):5552–62. https://doi.org/10.4049/jimmunol.178.9.5552.

    Article  CAS  PubMed  Google Scholar 

  14. Gonda TA, Varro A, Wang TC, Tycko B. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol. 2010;21(1):2–10. https://doi.org/10.1016/j.semcdb.2009.10.001.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 2014;25(2):47–60. https://doi.org/10.1016/j.semcancer.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  16. Junttila MR, de Sauvage FJ. Influence of tumour microenvironment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54. https://doi.org/10.1038/nature12626.

    Article  CAS  PubMed  Google Scholar 

  17. Pena C, Cespedes MV, Lindh MB, Kiflemariam S, Mezheyeuski A, Edqvist PH, Hägglöf C, Birgisson H, Bojmar L, Jirström K, Sandström P, Olsson E, Veerla S, Gallardo A, Sjöblom T, Chang AC, Reddel RR, Mangues R, Augsten M, Ostman A. STC1 expression by cancer associated fibroblasts drives metastasis of colorectal cancer. Cancer Res. 2013;73(4):1287–97. https://doi.org/10.1158/0008-5472.CAN-12-1875.

    Article  CAS  PubMed  Google Scholar 

  18. Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick M, Borg Å, Micke P, Egevad L, Östman A. CXCL14 is an autocrine growth factor for fbroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA. 2009;106(9):3414–9. https://doi.org/10.1073/pnas.0813144106.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Augsten M, Sjoberg E, Frings O, Vorrink SU, Frijhoff J, Olsson E, Borg Å, Östman A. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res. 2014;74(11):2999–3010. https://doi.org/10.1158/0008-5472.CAN-13-2740.

    Article  CAS  PubMed  Google Scholar 

  20. Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A. The history of angiogenic switch concept. Leukemia. 2007;21(1):44–52. https://doi.org/10.1038/sj.leu.2404402.

    Article  CAS  PubMed  Google Scholar 

  21. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science. 2000;289(5482):1197–2002. https://doi.org/10.1126/science.289.5482.1197.

    Article  CAS  PubMed  Google Scholar 

  22. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65. https://doi.org/10.1158/0008-5472.CAN-10-3323.

    Article  CAS  PubMed  Google Scholar 

  23. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat immunol. 2013;14(10):1014–22. https://doi.org/10.1038/ni.2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13(10):739–52. https://doi.org/10.1038/nrc3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trikha P, Carson EW III. Signaling pathways involved in MDSC regulation. Biochim Biophys Acta. 2014;1846(1):55–65. https://doi.org/10.1016/j.bbcan.2014.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res. 2014;20(15):4096–106. https://doi.org/10.1158/1078-0432.CCR-14-0635.

    Article  CAS  PubMed  Google Scholar 

  27. Yu F, Shi Y, Wang J, Li J, Fan DP, Ai WD. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells. Int J Cancer. 2013;133(12):2872–83. https://doi.org/10.1002/ijc.28302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Yu F, Jia X, Iwanowycz S, Wang Y, Huang S, Ai W, Fan D. MicroRNA-155 deficiency enhances the recruitment and functions of myeloid-derived suppressor cells in tumor microenvironment and promotes solid tumor growth. Int J Cancer. 2015;136(6):602–13. https://doi.org/10.1002/ijc.29151.

    Article  CAS  Google Scholar 

  29. Liu J, Zhang Y, Zhao J, Yang Z, Li D, Katirai F, Huang B. Mast cell: insight into remodeling a tumor microenvironment. Cancer Metastasis Rev. 2011;30(2):177–84. https://doi.org/10.1007/s10555-011-9276-1.

    Article  CAS  PubMed  Google Scholar 

  30. Saleem SJ, Martin RK, Morales JK, Sturgill JL, Gibb DR, Graham L, Bear HD, Manjili MH, Ryan JJ, Conrad DH. Cutting edge: mast cells critically augment myeloid-derived suppressor cell activity. J Immunol. 2012;189(2):511–5. https://doi.org/10.4049/jimmunol.1200647.

    Article  CAS  PubMed  Google Scholar 

  31. Spano D, Zollo M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis. 2012;29(4):381–95. https://doi.org/10.1007/s10585-012-9457-5.

    Article  CAS  PubMed  Google Scholar 

  32. Gillies ER, Goodmin AP, Frechet JMJ. Acetals as pH-sensitive linkages for drug delivery. Bioconjugate chem. 2004;15(16):1254–63. https://doi.org/10.1016/S1350-4487(03)00156-2.

    Article  CAS  Google Scholar 

  33. Felber AE, Dufresne MH, Leroux JC. pH-sensitive Vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliver Rev. 2011;64(11):979–92. https://doi.org/10.1016/j.addr.2011.09.006.

    Article  CAS  Google Scholar 

  34. Lisanti MP, Martinez-Outschoorn UE, Sotgia F. Oncogenes induce the cancer-associated fibroblast phenotype metabolic symbiosis and “fibroblast addiction” are new therapeutic targets for drug discovery. Cell Cycle. 2013;12(17):2723–32. https://doi.org/10.4161/cc.25695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. https://doi.org/10.1016/j.immuni.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  36. Gordon S, Plüddemann A, Martinez EF. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev. 2015;262(1):36–55. https://doi.org/10.1111/imr.12223.

    Article  CAS  Google Scholar 

  37. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92. https://doi.org/10.1084/jem.176.1.287.

    Article  CAS  PubMed  Google Scholar 

  38. Gordon S, Mantovani A. Diversity and plasticity of mononuclear phagocytes. Eur J Immunol. 2011;41(9):2470–2. https://doi.org/10.1002/eji.201141988.

    Article  CAS  PubMed  Google Scholar 

  39. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85. https://doi.org/10.1002/path.4133.

    Article  CAS  PubMed  Google Scholar 

  40. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96. https://doi.org/10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  41. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. https://doi.org/10.1038/nri2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. https://doi.org/10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  43. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64. https://doi.org/10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  44. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55. https://doi.org/10.1016/S1471-4906(02)02302-5.

    Article  CAS  PubMed  Google Scholar 

  45. Hume DA. The many alternative faces of macrophage activation. Front Immunol. 2015;6:370. https://doi.org/10.3389/fimmu.2015.00370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35. https://doi.org/10.1038/nri978.

    Article  CAS  PubMed  Google Scholar 

  47. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9(4):259–70. https://doi.org/10.1038/nri2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eubank TD, Roberts RD, Khan M, Curry JM, Nuovo GJ, Kuppusamy P, Marsh CB. Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res. 2009;69(5):2133–40. https://doi.org/10.1158/0008-5472.CAN-08-1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231–7. https://doi.org/10.1016/j.coi.2010.01.009.

    Article  CAS  PubMed  Google Scholar 

  50. Ryder M, Ghossein RA, Ricarte-Filho JC, Knauf JA, Fagin JA. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr-Relat Cancer. 2008;15(4):1069–74. https://doi.org/10.1677/ERC-08-0036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 2014;5:603. https://doi.org/10.3389/fimmu.2014.00603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caronni N, Savino B, Bonecchi R. Myeloid cells in cancer-related inflammation. Immunobiology. 2015;220(2):249–53. https://doi.org/10.1016/j.imbio.2014.10.001.

    Article  CAS  PubMed  Google Scholar 

  53. Mantovani A, Locati M. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscl Throm Vas. 2013;33(7):1478–83. https://doi.org/10.1161/atvbaha.113.300168.

    Article  CAS  Google Scholar 

  54. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86. https://doi.org/10.1016/j.it.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  55. Chen S, Yang X, Feng W, Yang F, Wang R, Chen C, Wang L, Lin Y, Ren Q, Zheng G. Characterization of peritoneal leukemia-associated macrophages in Notch 1 induced mouse T cell acute lymphoblastic leukemia. Mol Immunol. 2017;81:35–41. https://doi.org/10.1016/j.molimm.2016.11.014.

    Article  CAS  PubMed  Google Scholar 

  56. Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22(1):33–40. https://doi.org/10.1016/j.semcancer.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  57. Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222(1):155–61. https://doi.org/10.1111/j.1600-065X.2008.00607.x.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12(1):1–4. https://doi.org/10.1038/cmi.2014.83.

    Article  CAS  PubMed  Google Scholar 

  59. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95. https://doi.org/10.1172/JCI59643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang B, Li Q, Qin L, Zhao S, Wang J, Chen X. Transition of tumor-associated macrophages from MHC class II(hi) to MHC class II(low) mediates tumor progression in mice. BMC Immunol. 2011;12(1):43. https://doi.org/10.1186/1471-2172-12-43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75. https://doi.org/10.3389/fphys.2014.00075.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66(23):11238–46. https://doi.org/10.1158/0008-5472.CAN-06-1278.

    Article  CAS  PubMed  Google Scholar 

  63. Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y. Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res. 2011;17(23):7230–9. https://doi.org/10.1158/1078-0432.CCR-11-1354.

    Article  CAS  PubMed  Google Scholar 

  64. Bingle L, Lewis CE, Corke KP, Reed MWR, Brown NJ. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Brit J Cancer. 2006;94(1):101–7. https://doi.org/10.1038/sj.bjc.6602901.

    Article  CAS  PubMed  Google Scholar 

  65. Huang S, Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer I. 2002;94(15):1134–42. https://doi.org/10.1093/jnci/94.15.1134.

    Article  CAS  Google Scholar 

  66. Guiet R, Van Goethem E, Gugoule C, Balor S, Valette A, Al Saati T, Lowell CA, Le Cabec V, Maridonneau-Parini I. The process of macrophage migration promotes matrix metalloproteinase-independent invasion by tumor cells. J Immunol. 2011;187(7):3806–14. https://doi.org/10.4049/jimmunol.1101245.

    Article  CAS  PubMed  Google Scholar 

  67. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J. Direct visualization of macrophage assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67(6):2649–56. https://doi.org/10.1158/0008-5472.CAN-06-1823.

    Article  CAS  PubMed  Google Scholar 

  68. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condellis J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9. https://doi.org/10.1158/0008-5472.CAN-04-1449.

    Article  CAS  PubMed  Google Scholar 

  69. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6. https://doi.org/10.1038/nature07623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gil-Bernabé AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH, Watson K, Hill SA, Amirkhosravi A, Francis JL, Pollard JW, Ruf W, Muschel RJ. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood. 2012;119(13):3164–75. https://doi.org/10.1182/blood-2011-08-376426.

    Article  CAS  PubMed  Google Scholar 

  71. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ. Hypoxia-induced lysyl-oxidase is a critical mediator of bone marrow cell recruitment to form the pre-metastatic niche. Cancer Cell. 2009;15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res. 2014;74(20):5723–33. https://doi.org/10.1158/0008-5472.CAN-13-2347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37. https://doi.org/10.1084/jem.20082173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Van Esch EM, van Poelgeest MI, Trimbos JB, Fleuren GJ, Jordanova ES, van der Burg SH. Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of HPV-induced vulvar neoplasia. Int J Cancer. 2015;136(4):E85–E94. https://doi.org/10.1002/ijc.29173.

    Article  CAS  PubMed  Google Scholar 

  75. Eruslanov E, Stoffs T, Kim WJ, Daurkin I, Gilbert SM, Su LM, Vieweg J, Daaka Y, Kusmartsev S. Expansion of CCR8+ inflammatory myeloid cells in cancer patients with urothelial and renal carcinomas. Clin Cancer Res. 2013;19(7):1670–80. https://doi.org/10.1158/1078-0432.CCR-12-2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471–84. https://doi.org/10.1038/nrd2059.

    Article  CAS  PubMed  Google Scholar 

  77. Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9(5):353–63. https://doi.org/10.1038/nri2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the cited authors for providing the research results for our reference.

Funding

This research was supported by Youth Science Foundation of Guangxi Medical University (GXMUYSF201612), the National Natural Science Foundation of China (Grant No. 81560446) and the National Natural Science Foundation of Guangxi (Grant No. 2016GXNSFBA380157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval (research involving human participants and/or animals)

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Huang, X., Carlos, C.J.J. et al. Research progress of tumor microenvironment and tumor-associated macrophages. Clin Transl Oncol 22, 2141–2152 (2020). https://doi.org/10.1007/s12094-020-02367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02367-x

Keywords

Navigation