Skip to main content

Advertisement

Log in

RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma is the most common malignant brain tumor in central nervous system. Due to absence of the mechanism underlying glioblastoma, the clinical outcome is poor. RNF213 is a ring finger protein and mutation in RNF213 gene is detected in cancers. But the role of RNF213 in glioblastoma is unknown.

Methods

RNF213 expression was detected by qPCR, western blotting, IHC technology. RNF213 was overexpressed in plasmid pcDNA3.1. Assays including CCK-8, plate colony formation, wound healing, transwell and FITC/PI dye were used to detect cell behaviors.

Results

RNF213 was shown to express much lower in tumor tissues and in tumor cell lines compared to control. The patients with higher RNF213 expression displayed longer survival time. When RNF213 was overexpressed in U87MG cells, cell proliferation and colony formation were inhibited significantly. The ability of cell migration and invasion was also suppressed. FAC analysis demonstrated that cell apoptosis was increased after RNF213 overexpression. But cell cycle distribution was not affected by RNF213. Then the expression level of MEKK1, JNK, c-Jun, and cdc42 was decreased after RNF213 overexpression, but increased reversely when RNF213 was knocked down by RNAi technology.

Conclusions

RNF213 suppresses carcinogenesis and affects MAPK/JNK signaling pathway in glioblastoma. This study suggests that RNF213 might be a promising target for therapy of glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zang LL, Kondengaden SM, Che FY, Wang LJ, Heng XY. Potential epigenetic-based therapeutic targets for glioma. Front Mol Neurosci. 2018;11:408.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wen PY, Huse JT. 2016 world health organization classification of central nervous system tumors. Continuum. 2017;23:1531–47.

    PubMed  Google Scholar 

  3. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen YW, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15:1–56.

    Google Scholar 

  4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    PubMed  PubMed Central  Google Scholar 

  5. Krex D, Klink B, Hartmann C, Deimling AV, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130:2596–606.

    PubMed  Google Scholar 

  6. Curran WJ, Scott CB, Weinstein AS, Martin LA, Nelson JS, Phillips TL, et al. Survival comparison of radiosurgery-eligible and –ineligible malignant glioma patients treated with hyperfractionated radiation therapy and carmustine: a report of Radiation Therapy Oncology Group 83–02. J Clin Oncol. 1993;11:857–62.

    PubMed  Google Scholar 

  7. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Google Scholar 

  8. Alphandery E. Glioblastoma treatments: an account of recent industrial developments. Front Pharmacol. 2018;9:879.

    PubMed  PubMed Central  Google Scholar 

  9. Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Trans Med. 2018;7:33.

    Google Scholar 

  10. Liu WY, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS ONE. 2011;6:e22542.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Morito D, Nishikawa K, Hoseki J, Kitamura A, Kotani Y, Kiso K, et al. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state. Sci Rep. 2014;4:4442.

    PubMed  PubMed Central  Google Scholar 

  12. Koizumi A, Kobayashi H, Hitomi T, Harada KH, Habu T, Youssefian S. A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med. 2016;21:55–70.

    CAS  PubMed  Google Scholar 

  13. Wang Y, Mambiya M, Li Q, Yang L, Jia H, Han Y, et al. RNF213 p.R4810K polymorphism and the risk of moyamoya disease, intracranial major artery stenosis/occlusion, and quasi-moyamoya disease: a meta-analysis. J Stroke Cerebrovasc Dis. 2018;27:2259–70.

    PubMed  Google Scholar 

  14. Morimoto T, Enmi J, Hattori Y, Iguchi S, Saito S, Haraha KH, et al. Dysregulation of RNF213 promotes cerebral hypoperfusion. Sci Rep. 2018;8:3607.

    PubMed  PubMed Central  Google Scholar 

  15. Kobayashi H, Kabata R, Kinoshita H, Morimoto T, Ono K, Takeda M, et al. Rare variants in RNF213, a susceptibility gene for moyamoya disease, are found in patients with pulmonary hypertension and aggravate hypoxia-induced pulmonary hypertension in mice. Pulm Circ. 2018;8:2045894018778155.

    PubMed  PubMed Central  Google Scholar 

  16. Bai ZX, Stamova B, Xu HC, Ander BP, Wang JJ, Jickling GC, et al. Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities. Alzheimer Dis Assoc Disord. 2014;28:226–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bang OY, Chung JW, Cha J, Lee MJ, Yeon JY, Ki CS, et al. A Polymorphism in RNF213 Is a Susceptibility Gene for Intracranial Atherosclerosis. PLoS ONE. 2016;11:e0156607.

    PubMed  PubMed Central  Google Scholar 

  18. Li XC, Xu WQ, Kang W, Wong SH, Wang M, Zhou Y, et al. Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features. Theranostics. 2018;8:1740–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ge S, Li BF, Li YY, Li ZW, Liu ZT, Chen ZH, et al. Genomic alterations in advanced gastric cancer endoscopic biopsy samples using targeted next-generation sequencing. Am J Cancer Res. 2017;7:1540–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Er TK, Su YF, Wu CC, Chen CC, Wang J, Hsieh TH. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. J Mol Med (Berl). 2016;94:835–47.

    CAS  Google Scholar 

  21. Vettore AL, Ramnarayanan K, Poore G, Lim K, Ong CK, Huang KK, et al. Mutational landscapes of tongue carcinoma reveal recurrent mutations in genes of therapeutic and prognostic relevance. Genome Med. 2015;7:98.

    PubMed  PubMed Central  Google Scholar 

  22. Kohutek ZA, Rosati LM, Hong J, Poling J, Attiyeh MA, Makohon-Moore A, et al. An unusual genomic variant of pancreatic ductal adenocarcinoma with an indolent clinical course. Cold Spring Harb Mol Case Stud. 2017;3:a001701.

    PubMed  PubMed Central  Google Scholar 

  23. Van Der Krogt JA, Bempt MV, Ferreiro JF, Mentens N, Jacobs K, Pluys U, et al. Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with the variant RNF213-, ATIC- and TPM3-ALK fusions is characterized by copy number gain of the rearranged ALK gene. Haematologica. 2017;102:1605–16.

    PubMed  PubMed Central  Google Scholar 

  24. Vlenterie M, Hillebrandt-roeffen MHS, Flucke UE, Groenen PJTA, Tops BBJ, Kamping EJ, et al. Next-generation sequencing in synovial sarcoma reveals novel gene mutations. Oncotarget. 2015;6:34680–90.

    PubMed  PubMed Central  Google Scholar 

  25. Rawal RM, Joshi MN, Bhargava P, Shaikh I, Pandit AS, Patel RP, et al. Tobacco habituated and non-habituated subjects exhibit different mutational spectrums in head and neck squamous cell carcinoma. 3 Biotech. 2015;5:685–96.

    PubMed  Google Scholar 

  26. Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL, et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res. 2014. https://doi.org/10.1101/gr.165126.113.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou JB, Zhang T, Wang BF, Gao HZ, Xu X. Identification of a novel gene fusion RNF213-SLC26A11 in chronic myeloid leukemia by RNA-Seq. Mol Med Rep. 2012;7:591–7.

    PubMed  Google Scholar 

  28. Hitomi T, Habu T, Kobayashi H, Okuda H, Harada KH, Osafune K, et al. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G%3eA) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients. Biochem Biophys Res Commun. 2013;438:13–9.

    CAS  PubMed  Google Scholar 

  29. Ohkubo K, Sakai Y, Inoue H, Akamine S, Ishizaki Y, Matsushita Y, et al. Moyamoya disease susceptibility gene RNF213 links inflammatory and angiogenic signals in endothelial cells. Sci Rep. 2015;5:13191.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hitomi T, Habu T, Kobayashi H, Okuda H, Harada KH, Osafune K, et al. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality. Biochem Biophys Res Commun. 2013;439:419–26.

    CAS  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2△△Ct method. Methods. 2001;25:402–8.

    CAS  Google Scholar 

  32. Ohshima K, Hatakeyama K, Nagashima T, Watanabe Y, Kanto K, Doi Y, et al. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors. Sci Rep. 2017;7:641.

    PubMed  PubMed Central  Google Scholar 

  33. Robbins CJ, Bou-dargham MJ, Sanchez K, Rosen MC, Sang QA. Decoding somatic driver gene mutations and affected signaling pathways in human medulloblastoma subgroups. J Cancer. 2018;9:4596–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang LC, Vural S, Sonkin D. Detection of homozygous deletions in tumor-suppressor genes ranging from dozen to hundreds nucleotides in cancer models. Hum Mutat. 2017;38:1449–533.

    CAS  PubMed  Google Scholar 

  35. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Google Scholar 

  36. Crunkhorm S. Cancer: combating resistance to EGFR inhibitors. Nat Rev Drug Discov. 2018;18:18.

    Google Scholar 

  37. Phi JH, Choi JW, Seong MW, Kim T, Moon YJ, Lee J, et al. Association between moyamoya syndrome and the RNF213 c.14576G%3eA variant in patients with neurofibromatosis Type1. J Neurosurg Pediatr. 2016; 17: 717–22.**

  38. Huang FJ, Lan KC, Kang HY, Lin PY, Chan WH, Hsu YC, et al. Retinoic acid influences the embryoid body formation in mouse embryonic stem cells by induction of Caspase and p38 MAPK/JNK-mediated apoptosis. Environ Toxicol. 2013;28:190–200.

    PubMed  Google Scholar 

  39. Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2018. https://doi.org/10.1038/s41388-018-0582-8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao LJ, Gu PQ, Zhao W, Ding WY, Zhao XQ, Guo SY, et al. The role of globular heads of the C1q receptor in HPV16E2-induced human cervical squamous carcinoma cell apoptosis is associated with p38 MAPK/JNK activation. J Transl Med. 2013;11:118.

    PubMed  PubMed Central  Google Scholar 

  41. Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, et al. SMAD4 loss is associated with Cetuximab resistance and induction of MAPK/JNK activation in head and neck cancer cells. Clin Cancer Res. 2017;23:5162–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cui ZW, Xie ZX, Wang BF, Zhong ZH, Chen XY, Sun YH, et al. Carvacrol protects neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway. Acta Pharmacol Sin. 2015;36:1426–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu J, Zheng Y, Zhang HY, Sun H. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose regulates apoptosis in ovarian cancer cells via p38 MAPK/JNK signaling pathway. Am J Transl Res. 2018;8:4812–21.

    Google Scholar 

  44. Xu LM, Zhang XY, Li YN, Lu SH, Lu S, Li JY, et al. Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/JNK activation. Tumour Biol. 2016;37:8721–9.

    CAS  PubMed  Google Scholar 

  45. Zhang X. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang PY, Kang W, Pan YW, Zhao XJ, Duan L. Overexpression of HOXC6 promotes cell proliferation and migration via MAPK signaling and predicts a poor prognosis in glioblastoma. Cancer Manag Res. 2019;11:8167–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Munoz L, Yeung YT, Grewal T. Oncogenic Ras modulates p38 MAPK-mediated inflammatory cytokine production in glioblastoma cells. Cancer Biol Ther. 2016;17:355–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    CAS  PubMed  Google Scholar 

  49. Rodriguez-Garcia A, Samso P, Fontova P, Simon-Molas H, Manzano A, Castano E, et al. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J. 2017;284:3437–54.

    CAS  PubMed  Google Scholar 

  50. Aroui S, Aouey B, Chtourou Y, Meunier AC, Fetoui H, Kenani A. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem Biol Interact. 2016;244:195–203.

    CAS  PubMed  Google Scholar 

  51. Huang Z, Xia Y, Hu K, Zeng S, Wu L, Liu S, et al. Histone deacetylase 6 promotes growth of glioblastoma through the MKK7/JNK/c-Jun signaling pathway. J Neurochem. 2019. https://doi.org/10.1111/jnc.14849.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (No.81760446 and No.81660420), Key Project of Jiangxi Natural Science Foundation (No.20171ACB20035), Construction Plan of the Superior Science and Technology Innovation Team of Jiangxi Province (No.20152BCB24009) and Foreign Science and Technology Cooperation Plan of Jiangxi Province (No.20151BDH8009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All human and animal studies have been approved by the appropriate ethics committee and have, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All persons gave their informed consent prior to their inclusion in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ye, M., Wu, M. et al. RNF213 suppresses carcinogenesis in glioblastoma by affecting MAPK/JNK signaling pathway. Clin Transl Oncol 22, 1506–1516 (2020). https://doi.org/10.1007/s12094-020-02286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02286-x

Keywords

Navigation