Skip to main content

Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+ 4/CD44+ prostate cancer stem cells

Abstract

Objective

To investigate the gene expression profile of CSCs and to explore the key pathways and specific molecular signatures involved in the characteristic of CSCs.

Materials and methods

CD133+ /CD44+ CSCs and bulk population (non-CSCs) were isolated from DU-145 cells using fluorescence-activated cell sorting (FACS). We used Illumina HumanHT-12 v4 Expression to investigate gene expression profiling of CSCs and non-CSCs. Protein–protein interaction (PPI) network analysis was performed using the STRING database. Biomarkers selected based on gene expression profiling were visually analyzed using immunofluorescence staining method. An image analysis program, ImageJ®, was used for the analysis of fluorescence intensity.

Results

In microarray analysis, we found that many ribosomal proteins and translation initiation factors that constitute the mTOR complex were highly expressed. PPI analysis using the 33 genes demonstrated that there was a close interaction between ribosome biogenesis, translation, and mTOR signaling. The fluorescence amount of mTOR and MLST8 were higher in CSCs compared to non-CSCs.

Conclusions

The increase in a number of genes associated with ribosome biogenesis, translation, and mTOR signaling may be important to evaluate prognosis and determine treatment approach for prostate cancer (PCa). A better understanding of the molecular pathways associated with CSCs may be promising to develop targeted therapies to prolong survival in PCa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ATCC:

American Type Culture Collection

CSC:

Cancer stem cell

DAPI:

4′,6-Diamidino-2-phenylindole

DEGs:

Differentially expressed genes

DU-145:

Prostate cancer cell lines

DU-145 CSC:

DU-145 cancer stem cell

DU-145 non-CSC:

DU-145 non-cancer stem cell (bulk population)

ERG:

Erythroblastosis virus oncogene

FACS:

Fluorescence-activated cell separation

mTOR:

Mammalian target of rapamycin

PBS:

Phosphate-buffered saline

PCa:

Prostate cancer

PI3K:

Phosphatidylinositol 3-kinase

PPI:

Protein–protein interaction

SC:

Stem cell

TMPRSS2:

Androgen-regulated transmembrane serine protease gene

ULK1:

Homo sapiens unc-51-like kinase 1

ULK2:

Homo sapiens unc-51-like kinase 2

References

  1. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–444. https://doi.org/10.1158/0008-5472.CAN-06-3126.

    Article  CAS  PubMed  Google Scholar 

  2. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25(12):1696–708. https://doi.org/10.1038/sj.onc.1209327.

    Article  CAS  PubMed  Google Scholar 

  3. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98(4):756–65. https://doi.org/10.1038/sj.bjc.6604242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M. Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med. 2008;14(10):450–60. https://doi.org/10.1016/j.molmed.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  5. Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, Martin NE, Kunz L, Penney KL, Ligon AH, Suppan C, Flavin R, Sesso HD, Rider JR, Sweeney C, Stampfer MJ, Fiorentino M, Kantoff PW, Sanda MG, Giovannucci EL, Ding EL, Loda M, Mucci LA. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2012;21(9):1497–509. https://doi.org/10.1158/1055-9965.EPI-12-0042.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Korsten H, Ziel-van der Made A, Ma X, van der Kwast T, Trapman J. Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS ONE. 2009;4(5):e5662. https://doi.org/10.1371/journal.pone.0005662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang SJ, Wang S. Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo. Tumour Biol. 2015;36(10):8177–84. https://doi.org/10.1007/s13277-015-3536-6.

    Article  CAS  PubMed  Google Scholar 

  8. Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl. 2014;16(3):378–86. https://doi.org/10.4103/1008-682X.122876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bastide A, David A. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis. 2018;7(4):34. https://doi.org/10.1038/s41389-018-0044-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 2016;17(1):236. https://doi.org/10.1186/s13059-016-1104-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat KM, Rommel C, Ruggero D. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485(7396):55–61. https://doi.org/10.1038/nature10912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gentilella A, Kozma SC, Thomas G. A liaison between mTOR signaling, ribosome biogenesis and cancer. Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms. 2015;1849(7):812–20.

    Article  CAS  Google Scholar 

  13. Lamb R, Harrison H, Smith DL, Townsend PA, Jackson T, Ozsvari B, Martinez-Outschoorn UE, Pestell RG, Howell A, Lisanti MP, Sotgia F. Targeting tumor-initiating cells: eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction. Oncotarget. 2015;6(7):4585–601. https://doi.org/10.18632/oncotarget.3278.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kakumoto K, Ikeda J, Okada M, Morii E, Oneyama C. mLST8 promotes mTOR-mediated tumor progression. PLoS ONE. 2015;10(4):e0119015. https://doi.org/10.1371/journal.pone.0119015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slattery ML, Herrick JS, Lundgreen A, Fitzpatrick FA, Curtin K, Wolff RK. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis. 2010;31(9):1604–11. https://doi.org/10.1093/carcin/bgq142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin J, Wang J, Greisinger AJ, Grossman HB, Forman MR, Dinney CP, Hawk ET, Wu X. Energy balance, the PI3K-AKT-mTOR pathway genes, and the risk of bladder cancer. Cancer Prev Res (Phila). 2010;3(4):505–17. https://doi.org/10.1158/1940-6207.CAPR-09-0263.

    Article  CAS  Google Scholar 

  17. Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS. mTOR mediated anti-cancer drug discovery. Drug Discov Today Ther Strateg. 2009;6(2):47–55. https://doi.org/10.1016/j.ddstr.2009.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal. 2009;2(67):pe24. https://doi.org/10.1126/scisignal.267pe24.

    Article  PubMed  Google Scholar 

  19. Oneyama C, Kito Y, Asai R, Ikeda J, Yoshida T, Okuzaki D, Kokuda R, Kakumoto K, Takayama K, Inoue S, Morii E, Okada M. MiR-424/503-mediated Rictor upregulation promotes tumor progression. PLoS ONE. 2013;8(11):e80300. https://doi.org/10.1371/journal.pone.0080300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doghman M, El Wakil A, Cardinaud B, Thomas E, Wang J, Zhao W, Peralta-Del Valle MH, Figueiredo BC, Zambetti GP, Lalli E. Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res. 2010;70(11):4666–755. https://doi.org/10.1158/0008-5472.CAN-09-3970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24(2):447–63.

    Article  CAS  Google Scholar 

  22. Uesugi A, Kozaki K, Tsuruta T, Furuta M, Morita K, Imoto I, Omura K, Inazawa J. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71(17):5765–78. https://doi.org/10.1158/0008-5472.CAN-11-0368.

    Article  CAS  PubMed  Google Scholar 

  23. Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O, Liu D, Wan L, Zhai B, Yu Y, Yuan M, Kim BM, Shaik S, Menon S, Gygi SP, Lee TH, Asara JM, Manning BD, Blenis J, Su B, Wei W. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol. 2013;15(11):1340–50. https://doi.org/10.1038/ncb2860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11(6):859–71. https://doi.org/10.1016/j.devcel.2006.10.007.

    Article  CAS  PubMed  Google Scholar 

  25. Armengol G, Rojo F, Castellví J, Iglesias C, Cuatrecasas M, Pons B, Baselga J, y Cajal SR. 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Can Res. 2007;67(16):7551–5.

    Article  CAS  Google Scholar 

  26. Frey JW, Jacobs BL, Goodman CA, Hornberger TA. A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. Cell Signal. 2014;26(2):313–22. https://doi.org/10.1016/j.cellsig.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  27. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen J-H, Mullholland DJ, Magnuson MA, Wu H, Sabatini DM. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148–59.

    Article  CAS  Google Scholar 

  28. Martelli AM, Evangelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, Manzoli L, McCubrey JA, Cocco L. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem. 2011;18(18):2715–26.

    Article  CAS  Google Scholar 

  29. Murray NP, Aedo S, Fuentealba C, Reyes E, Jacob O. How localized is pathologically localized prostate cancer? The use of secondary circulating prostate cells as a marker of minimal residual disease and their association with patient outcome. Turkish journal of urology. 2017;43(4):456.

    Article  Google Scholar 

  30. Arthurs C, Murtaza BN, Thomson C, Dickens K, Henrique R, Patel HRH, Beltran M, Millar M, Thrasivoulou C, Ahmed A. Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS ONE. 2017;12(10):e0186047. https://doi.org/10.1371/journal.pone.0186047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akbayir S, Muslu N, Erden S, Bozlu M. Diagnostic value of microRNAs in prostate cancer patients with prostate specific antigen (PSA) levels between 2, and 10 ng/mL. Turk J Urol. 2016;42(4):247–55. https://doi.org/10.5152/tud.2016.52463.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Erol A, Acikgoz E, Guven U, Duzagac F, Turkkani A, Colcimen N, Oktem G. Ribosome biogenesis mediates antitumor activity of flavopiridol in CD44(+)/CD24(-) breast cancer stem cells. Oncol Lett. 2017;14(6):6433–40. https://doi.org/10.3892/ol.2017.7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z Binal, E Acikgoz, G Oktem: Protocol/project development; Z Binal, E Acikgoz, F Kızılay, G Oktem, B Altay: Data collection or management; E Acikgoz, F Kızılay: Data analysis; Z Binal, E Acikgoz, F Kızılay, B Altay: Manuscript writing/editing.

Corresponding author

Correspondence to F. Kızılay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The authors declared that the research was conducted according to the principles of the World Medical Association Declaration of Helsinki “Ethical Principles for Medical Research Involving Human Subjects” (amended in October 2013).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Binal, Z., Açıkgöz, E., Kızılay, F. et al. Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+ 4/CD44+ prostate cancer stem cells. Clin Transl Oncol 22, 1040–1048 (2020). https://doi.org/10.1007/s12094-019-02229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02229-1

Keywords

  • Prostate cancer
  • Cancer stem cell
  • Ribosomal proteins
  • Translation
  • mTOR