Skip to main content

Advertisement

Log in

Differences of the immune cell landscape between normal and tumor tissue in human prostate

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Over the past few decades, immunological checkpoint therapy has been an increasingly prominent strategy in the treatment of tumors, including prostate cancer (PC). There are few systematic studies of the phenotypic of tumor-infiltrating immune cells in PC tissues.

Methods

CIBERSORT is an analytical tool for estimating the abundance of member cell types in mixed cell population by gene expression data. Herein, we analyzed different levels of tumor-infiltrating immunity cells in normal tissue compared with PC using CIBERSORT.

Results

The results showed that proportion of M1 macrophages and resting mast cells presented significant differences in prostate tumor than these normal tissues. A higher proportion of resting mast cells was associated with a worse outcome and M1 macrophages was associated with a favorable outcome. Moreover, the radiotherapy and targeted molecular therapy can affect the immune infiltration of M1 macrophages and resting mast cells.

Conclusions

Resting mast cells and M1 macrophages has an important role in the prognosis of prostate cancer. Our data provides valuable information about the future treatment of PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Punnen S, Cooperberg MR. The epidemiology of high-risk prostate cancer. Curr Opin Urol. 2013;23(4):331–6. https://doi.org/10.1097/MOU.0b013e328361d48e.

    Article  PubMed  Google Scholar 

  2. Lu X, Horner JW, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543(7647):728–32. https://doi.org/10.1038/nature21676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012;367(3):203–13. https://doi.org/10.1056/NEJMoa1113162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. https://doi.org/10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  5. Schepisi G, Farolfi A, Conteduca V, Martignano F, De Lisi D, Ravaglia G, et al. Immunotherapy for prostate cancer: where we are headed. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18122627.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horwich A, Hugosson J, de Reijke T, Wiegel T, Fizazi K, Kataja V, et al. Prostate cancer: ESMO consensus conference guidelines 2012. Ann Oncol. 2013;24(5):1141–62. https://doi.org/10.1093/annonc/mds624.

    Article  CAS  PubMed  Google Scholar 

  7. Chippaux C, Anraedt JL. Anterior pituitary endocrine therapy in osteoporosis and delays of consolidation. Med Trop (Mars). 1960;20:589–98.

    CAS  PubMed  Google Scholar 

  8. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11. https://doi.org/10.1038/35074122.

    Article  CAS  PubMed  Google Scholar 

  9. Gnjatic S, Bronte V, Brunet LR, Butler MO, Disis ML, Galon J, et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer. 2017;5:44. https://doi.org/10.1186/s40425-017-0243-4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, et al. PD-1 blockade expands intratumoral memory T cells. Cancer Immunol Res. 2016;4(3):194–203. https://doi.org/10.1158/2326-6066.CIR-15-0210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–59. https://doi.org/10.1007/978-1-4939-7493-1_12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C. Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med. 2016;13(12):e1002194. https://doi.org/10.1371/journal.pmed.1002194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nera KP, Kylaniemi MK, Lassila O. Regulation of B cell to plasma cell transition within the follicular B cell response. Scand J Immunol. 2015;82(3):225–34. https://doi.org/10.1111/sji.12336.

    Article  CAS  PubMed  Google Scholar 

  15. Lang ML. How do natural killer T cells help B cells? Expert Rev Vaccines. 2009;8(8):1109–21. https://doi.org/10.1586/erv.09.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ettinger R, Sims GP, Fairhurst AM, Robbins R, da Silva YS, Spolski R, et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol. 2005;175(12):7867–79. https://doi.org/10.4049/jimmunol.175.12.7867.

    Article  CAS  PubMed  Google Scholar 

  17. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99(Pt B):180–5. https://doi.org/10.1016/j.addr.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  18. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol. 2013;171(1):36–45. https://doi.org/10.1111/j.1365-2249.2012.04657.x.

    Article  CAS  PubMed  Google Scholar 

  19. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27. https://doi.org/10.1111/j.0105-2896.2006.00427.x.

    Article  CAS  PubMed  Google Scholar 

  20. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Investig. 2007;117(5):1167–74. https://doi.org/10.1172/JCI31202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. https://doi.org/10.1038/nri2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chavez-Galan L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263. https://doi.org/10.3389/fimmu.2015.00263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palmieri EM, Menga A, Martin-Perez R, Quinto A, Riera-Domingo C, De Tullio G, et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep. 2017;20(7):1654–66. https://doi.org/10.1016/j.celrep.2017.07.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazalova L, Sladek Z, Raudenska M, Balvan J, Gumulec J, Masarik M. Effect of prostate cancer cell line supernatant on functional polarization in macrophages. Bratisl Lek Listy. 2018;119(8):516–21. https://doi.org/10.4149/BLL_2018_095.

    Article  CAS  PubMed  Google Scholar 

  25. Ridge SM, Bhattacharyya D, Dervan E, Naicker SD, Burke AJ, Murphy JM, et al. Secreted factors from metastatic prostate cancer cells stimulate mesenchymal stem cell transition to a pro-tumourigenic ‘activated’ state that enhances prostate cancer cell migration. Int J Cancer. 2018;142(10):2056–67. https://doi.org/10.1002/ijc.31226.

    Article  CAS  PubMed  Google Scholar 

  26. Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med. 2015;212(4):435–45. https://doi.org/10.1084/jem.20150295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanoteau A, Newton JM, Krupar R, Huang C, Liu HC, Gaspero A, et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer. 2019;7(1):10. https://doi.org/10.1186/s40425-018-0485-9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811. https://doi.org/10.1146/annurev.immunol.18.1.767.

    Article  CAS  PubMed  Google Scholar 

  29. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26. https://doi.org/10.1038/nature06175.

    Article  CAS  PubMed  Google Scholar 

  30. Mohammadzadeh M, Shirmohammadi M, Ghojazadeh M, Nikniaz L, Raeisi M, Aghdas SAM. Dendritic cells pulsed with prostate-specific membrane antigen in metastatic castration-resistant prostate cancer patients: a systematic review and meta-analysis. Prostate Int. 2018;6(4):119–25. https://doi.org/10.1016/j.prnil.2018.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stoitzner P, Green LK, Jung JY, Price KM, Atarea H, Kivell B, et al. Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother. 2008;57(11):1665–73. https://doi.org/10.1007/s00262-008-0487-4.

    Article  CAS  PubMed  Google Scholar 

  32. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–79. https://doi.org/10.1152/physrev.1997.77.4.1033.

    Article  CAS  PubMed  Google Scholar 

  33. Burtin C, Ponvert C, Fray A, Scheinmann P, Lespinats G, Loridon B, et al. Inverse correlation between tumor incidence and tissue histamine levels in W/WV, WV/+, and +/+ mice. J Natl Cancer Inst. 1985;74(3):671–4.

    CAS  PubMed  Google Scholar 

  34. Benyon RC, Bissonnette EY, Befus AD. Tumor necrosis factor-alpha dependent cytotoxicity of human skin mast cells is enhanced by anti-IgE antibodies. J Immunol. 1991;147(7):2253–8.

    CAS  PubMed  Google Scholar 

  35. Singer J, Jensen-Jarolim E. IgE-based immunotherapy of cancer—a comparative oncology approach. J Carcinog Mutagen. 2014;5(3):1000176. https://doi.org/10.4172/2157-2518.1000176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakai Y, Nelson WG, De Marzo AM. The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res. 2007;67(3):1378–84. https://doi.org/10.1158/0008-5472.CAN-06-1336.

    Article  CAS  PubMed  Google Scholar 

  37. Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J, et al. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol. 2010;177(2):1031–41. https://doi.org/10.2353/ajpath.2010.100070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital (Grant no. CY2018-QN13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Informed consent

As this study is based on a publicly available database without identifying patient information, informed consent was not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, E., Dai, F., Mao, Y. et al. Differences of the immune cell landscape between normal and tumor tissue in human prostate. Clin Transl Oncol 22, 344–350 (2020). https://doi.org/10.1007/s12094-019-02128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02128-5

Keywords

Navigation