Skip to main content

Advertisement

Log in

The glycosyltransferase ST6Gal-I is enriched in cancer stem-like cells in colorectal carcinoma and contributes to their chemo-resistance

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Presence of cancer stem cells (CSCs) contributes to tumor outgrowth, chemo-resistance and relapse in some cancers including colorectal carcinoma (CRC). The current characterization methods of CSCs in CRC only allows enrichment of CSCs but not their purification. Recent reports showed that ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal-I) plays an essential role in protecting tumor cells against harsh environment like oxidative stress and nutrient deprivation. Therefore, whether ST6Gal-I may be highly expressed in CSCs or whether it may enhance resistance of tumor cells to chemotherapy deserves exploration.

Method

ST6Gal-I levels were determined in CRC specimens, compared to paired normal colorectal tissue, and examined in CD133+ vs CD133− CRC cells, and CD44+ vs CD44− CRC cells. ST6Gal-I levels and their association with patient survival were examined. In vivo, 2 CRC cell lines Caco-2 and SW48 were transduced with two lentiviruses, one lentivirus carrying a green fluorescent protein reporter and a luciferase reporter under a cytomegalovirus promoter to allow tracing tumor cells by both fluorescence and luciferase activity, and one lentivirus carrying a nuclear red fluorescent protein under the control of ST6Gal-I promoter to allow separation of ST6Gal-I+ vs ST6Gal-I− CRC cells. Tumor sphere formation, resistance to fluorouracil-induced apoptosis, and frequency of tumor formation after serial adoptive transplantation were done on ST6Gal-I+ vs ST6Gal-I− CRC cells.

Result

ST6Gal-I levels were significantly upregulated in clinically obtained CRC specimens, compared to paired normal colorectal tissue. Poorer patient survival was detected in ST6Gal-I-high CRC, compared to ST6Gal-I-low subjects. Higher levels of ST6Gal-I were detected in CD133+ CRC cells than CD133− CRC cells, and in CD44+ CRC cells than in CD44− CRC cells. Compared to ST6Gal-I− CRC cells, ST6Gal-I+ CRC cells generated significantly more tumor spheres in culture, were more resistant to fluorouracil-induced apoptosis likely through upregulating cell autophagy, and generated tumor more frequently after serial adoptive transplantation.

Conclusion

ST6Gal-I may be highly expressed in the cancer stem-like cells in CRC and enhances cancer cell resistance to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garza-Trevino EN, Said-Fernandez SL, Martinez-Rodriguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int. 2015;15(1):2. https://doi.org/10.1186/s12935-015-0163-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. De Maio G, Zama E, Rengucci C, Calistri D. What influences preneoplastic colorectal lesion recurrence? Oncotarget. 2017;8(7):12406–16. https://doi.org/10.18632/oncotarget.13628.

    Article  PubMed  Google Scholar 

  3. Curtin JC, Lorenzi MV. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget. 2010;1(7):552–66. https://doi.org/10.18632/oncotarget.101016.

    Article  Google Scholar 

  4. Kemper K, Grandela C, Medema JP. Molecular identification and targeting of colorectal cancer stem cells. Oncotarget. 2010;1(6):387–95. https://doi.org/10.18632/oncotarget.101003.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell. 2014;15(6):692–705. https://doi.org/10.1016/j.stem.2014.11.012.

    Article  PubMed  CAS  Google Scholar 

  6. Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, et al. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget. 2015;6(42):44191–206. https://doi.org/10.18632/oncotarget.6176.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5. https://doi.org/10.1038/nature05384.

    Article  PubMed  CAS  Google Scholar 

  8. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10. https://doi.org/10.1038/nature05372.

    Article  PubMed  CAS  Google Scholar 

  9. Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751–60. https://doi.org/10.1158/1078-0432.CCR-08-1034.

    Article  PubMed  CAS  Google Scholar 

  10. Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res. 2008;68(10):3655–61. https://doi.org/10.1158/0008-5472.CAN-07-2940.

    Article  PubMed  CAS  Google Scholar 

  11. Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154(2):515–23. https://doi.org/10.1016/S0002-9440(10)65297-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34. https://doi.org/10.1089/scd.2008.0338.

    Article  PubMed  CAS  Google Scholar 

  13. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–43. https://doi.org/10.5966/sctm.2015-0048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Taniguchi H, Moriya C, Igarashi H, Saitoh A, Yamamoto H, Adachi Y, et al. Cancer stem cells in human gastrointestinal cancer. Cancer Sci. 2016;107(11):1556–62. https://doi.org/10.1111/cas.13069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen C, Ma J, Lazic A, Backovic M, Colley KJ. Formation of insoluble oligomers correlates with ST6Gal I stable localization in the golgi. J Biol Chem. 2000;275(18):13819–26.

    Article  PubMed  CAS  Google Scholar 

  16. Britain CM, Dorsett KA, Bellis SL. The glycosyltransferase ST6Gal-I protects tumor cells against serum growth factor withdrawal by enhancing survival signaling and proliferative potential. J Biol Chem. 2017;292(11):4663–73. https://doi.org/10.1074/jbc.M116.763862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN, Buchsbaum DJ, et al. The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res. 2016;76(13):3978–88. https://doi.org/10.1158/0008-5472.CAN-15-2834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Swindall AF, Londono-Joshi AI, Schultz MJ, Fineberg N, Buchsbaum DJ, Bellis SL. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res. 2013;73(7):2368–78. https://doi.org/10.1158/0008-5472.CAN-12-3424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang X, Pan C, Zhou L, Cai Z, Zhao S, Yu D. Knockdown of ST6Gal-I increases cisplatin sensitivity in cervical cancer cells. BMC Cancer. 2016;16(1):949. https://doi.org/10.1186/s12885-016-2981-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wei A, Fan B, Zhao Y, Zhang H, Wang L, Yu X, et al. ST6Gal-I overexpression facilitates prostate cancer progression via the PI3 K/Akt/GSK-3beta/beta-catenin signaling pathway. Oncotarget. 2016;7(40):65374–88. https://doi.org/10.18632/oncotarget.11699.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Wang L, Zhao Y, Yuan S, Wu Q, Zhu X, et al. ST6Gal-I modulates docetaxel sensitivity in human hepatocarcinoma cells via the p38 MAPK/caspase pathway. Oncotarget. 2016;7(32):51955–64. https://doi.org/10.18632/oncotarget.10192.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schultz MJ, Swindall AF, Wright JW, Sztul ES, Landen CN, Bellis SL. ST6Gal-I sialyltransferase confers cisplatin resistance in ovarian tumor cells. J Ovarian Res. 2013;6(1):25. https://doi.org/10.1186/1757-2215-6-25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lee M, Park JJ, Ko YG, Lee YS. Cleavage of ST6Gal I by radiation-induced BACE1 inhibits golgi-anchored ST6Gal I-mediated sialylation of integrin beta1 and migration in colon cancer cells. Radiat Oncol. 2012;7:47. https://doi.org/10.1186/1748-717X-7-47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Swindall AF, Bellis SL. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem. 2011;286(26):22982–90. https://doi.org/10.1074/jbc.M110.211375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Christie DR, Shaikh FM, Lucas JAT, Lucas JA 3rd, Bellis SL. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res. 2008;1(1):3. https://doi.org/10.1186/1757-2215-1-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Humeniuk R, Mishra PJ, Bertino JR, Banerjee D. Epigenetic reversal of acquired resistance to 5-fluorouracil treatment. Mol Cancer Ther. 2009;8(5):1045–54. https://doi.org/10.1158/1535-7163.MCT-08-0717.

    Article  PubMed  CAS  Google Scholar 

  27. Srimuangwong K, Tocharus C, Yoysungnoen Chintana P, Suksamrarn A, Tocharus J. Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human colon cancer cells. World J Gastroenterol. 2012;18(19):2383–9. https://doi.org/10.3748/wjg.v18.i19.2383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ayinde O, Wang Z, Griffin M. Tissue transglutaminase induces epithelial-mesenchymal-transition and the acquisition of stem cell like characteristics in colorectal cancer cells. Oncotarget. 2017;8(12):20025–41. https://doi.org/10.18632/oncotarget.15370.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saikawa Y, Fukuda K, Takahashi T, Nakamura R, Takeuchi H, Kitagawa Y. Gastric carcinogenesis and the cancer stem cell hypothesis. Gastric cancer. 2010;13(1):11–24. https://doi.org/10.1007/s10120-009-0537-4.

    Article  PubMed  Google Scholar 

  30. Samadani AA, Akhavan-Niaki H. Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer. Med Oncol. 2015;32(3):48. https://doi.org/10.1007/s12032-015-0492-3.

    Article  PubMed  CAS  Google Scholar 

  31. Lu L, Wu M, Sun L, Li W, Fu W, Zhang X, et al. Clinicopathological and prognostic significance of cancer stem cell markers CD44 and CD133 in patients with gastric cancer: a comprehensive meta-analysis with 4729 patients involved. Medicine (Baltimore). 2016;95(42):e5163. https://doi.org/10.1097/MD.0000000000005163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Green DR, Levine B. To be or not to be? how selective autophagy and cell death govern cell fate. Cell. 2014;157(1):65–75. https://doi.org/10.1016/j.cell.2014.02.049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol. 2016;43(11):1021–8. https://doi.org/10.1111/1440-1681.12649.

    Article  PubMed  CAS  Google Scholar 

  34. Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015;25(6):354–63. https://doi.org/10.1016/j.tcb.2015.02.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–80. https://doi.org/10.1038/cdd.2010.191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Djavaheri-Mergny M, Maiuri MC, Kroemer G. Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene. 2010;29(12):1717–9. https://doi.org/10.1038/onc.2009.519.

    Article  PubMed  CAS  Google Scholar 

  37. Oldham RA, Berinstein EM, Medin JA. Lentiviral vectors in cancer immunotherapy. Immunotherapy. 2015;7(3):271–84. https://doi.org/10.2217/imt.14.108.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Tang or P. Yu.

Ethics declarations

Conflict of interest

The authors declared no competing interests.

Ethical approval

All the experimental protocols including animal procedures have been approved by the research committee at the Third Military Medical University and carried out in accordance with the guideline. Resected CRC specimens were obtained together with the paired adjacent non-tumor colorectal tissue (NT) from 66 patients since 2006 through 2011 at Third Military Medical University, with signed approval obtained from the involved patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Yang, S., Jiang, Y. et al. The glycosyltransferase ST6Gal-I is enriched in cancer stem-like cells in colorectal carcinoma and contributes to their chemo-resistance. Clin Transl Oncol 20, 1175–1184 (2018). https://doi.org/10.1007/s12094-018-1840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-018-1840-5

Keywords

Navigation