Advertisement

Clinical and Translational Oncology

, Volume 20, Issue 5, pp 561–569 | Cite as

Prognostic and predictive role of the PI3K–AKT–mTOR pathway in neuroendocrine neoplasms

  • P. Gajate
  • T. Alonso-Gordoa
  • O. Martínez-Sáez
  • J. Molina-Cerrillo
  • E. Grande
Review Article

Abstract

Neuroendocrine neoplasms (NENs) are considered a heterogeneous and rare entity. Its natural history is influenced by multiple clinicopathological characteristics, which guide the management of these patients. The development of molecular biology reveals that the PI3K–AKT–mTOR pathway plays a relevant role in tumorigenesis and progression of NENs. Mammalian target of rapamycin (mTOR) inhibitors, targeted agents that block this pathway, has improved outcomes in neuroendocrine tumors (NETs). Different therapeutic approaches, such as somatostatin analogs, chemotherapy, peptide receptor radionuclide therapy, and targeted agents, have shown benefits in the treatment of NETs. However, there are not any established prognostic or predictive biomarkers to select the best therapy option to individualize treatment. Although a relation between alterations in the PI3K–AKT–mTOR pathway and clinical outcomes has not been found, these anomalies are considered attractive biomarkers. Additional molecular analysis should be integrated in future clinical trials’ design to identify potential predictive or prognostic biomarkers.

Keywords

Neuroendocrine neoplasm Neuroendocrine tumors PI3K–AKT–mTOR pathway Predictive Prognostic mTOR Inhibitors 

Notes

Compliance with ethical standards

Ethical standards

The manuscript does not contain clinical studies or patient data.

Conflict of interest

EG. has served as advisor and delivered lectures for Novartis, Pfizer, and IPSEN. P.G. T.A-G, and O.M-S declare no conflict of interest related to this publication.

References

  1. 1.
    Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Rindi G, Klöppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449(4):395–401.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rindi G, Klöppel G, Couvelard A, Komminoth P, Körner M, Lopes JM, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451(4):757–62.CrossRefPubMedGoogle Scholar
  4. 4.
    The International Agency for Research on Cancer, Bosman FT, Carneiro F. WHO classification of tumours of the digestive system. Lyon: World Health Organization classification; 2010. p. 417Google Scholar
  5. 5.
    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10(9):1243–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Caplin ME, Baudin E, Ferolla P, Filosso P, Garcia-Yuste M, Lim E, et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann Oncol. 2015;26(8):1604–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Strosberg JR, Cheema A, Weber J, Han G, Coppola D, Kvols LK. Prognostic validity of a novel American Joint Committee on Cancer Staging Classification for pancreatic neuroendocrine tumors. J Clin Oncol. 2011;29(22):3044–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Strosberg JR, Weber JM, Feldman M, Coppola D, Meredith K, Kvols LK. Prognostic validity of the American Joint Committee on Cancer Staging Classification for midgut neuroendocrine tumors. J Clin Oncol. 2013;31(4):420–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Panzuto F, Boninsegna L, Fazio N, Campana D, Pia Brizzi M, Capurso G, et al. Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J Clin Oncol. 2011;29(17):2372–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Panzuto F. Prognostic factors and survival in endocrine tumor patients: comparison between gastrointestinal and pancreatic localization. Endocrine Relat Cancer. 2005;12(4):1083–92.CrossRefGoogle Scholar
  11. 11.
    Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Ortolani S, Ciccarese C, Cingarlini S, Tortora G, Massari F. Suppression of mTOR pathway in solid tumors: lessons learned from clinical experience in renal cell carcinoma and neuroendocrine tumors and new perspectives. Future Oncol. 2015;11(12):1809–28.CrossRefPubMedGoogle Scholar
  13. 13.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Cargnello M, Tcherkezian J, Roux PP. The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis. 2015;30(2):169–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15(3):155–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27(13):2278–87.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Corbo V, Beghelli S, Bersani S, Antonello D, Talamini G, Brunelli M, et al. Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Oncol. 2011;23(1):127–34.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    von Wichert G, Jehle PM, Hoeflich A, Koschnick S, Dralle H, Wolf E, et al. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Can Res. 2000;60(16):4573–81.Google Scholar
  23. 23.
    Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, Della Peruta M, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28(2):245–55.CrossRefPubMedGoogle Scholar
  24. 24.
    Poncet G, Villaume K, Walter T, Pourreyron C, Theillaumas A, Lépinasse F, et al. Angiogenesis and tumor progression in neuroendocrine digestive tumors. YJSRE. 2009;154(1):68–77.Google Scholar
  25. 25.
    Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Raymond E, Dahan L, Raoul J-L, Bang Y-J, Borbath I, Lombard-Bohas C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Ghayouri M, Boulware D, Nasir A, Strosberg J, Kvols L, Coppola D. Activation of the serine/theronine protein kinase Akt in enteropancreatic neuroendocrine tumors. Anticancer Res. 2010;30(12):5063–7.PubMedGoogle Scholar
  28. 28.
    Shah T, Hochhauser D, Frow R, Quaglia A, Dhillon AP, Caplin ME. Epidermal growth factor receptor expression and activation in neuroendocrine tumours. J Neuroendocrinol. 2006;18(5):355–60.CrossRefPubMedGoogle Scholar
  29. 29.
    François RA, Maeng K, Nawab A, Kaye FJ, Hochwald SN, Zajac-Kaye M. Targeting focal adhesion kinase and resistance to mTOR inhibition in pancreatic neuroendocrine tumors. J Natl Cancer Inst. 2015;107(8):djv123.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang L, Ignat A, Axiotis CA. Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms. Appl Immunohistochem Mol Morphol. 2002;10(2):139–46.PubMedGoogle Scholar
  31. 31.
    Zhou C-F, Ji J, Yuan F, Shi M, Zhang J, Liu B-Y, et al. mTOR activation in well differentiated pancreatic neuroendocrine tumors: a retrospective study on 34 cases. Hepatogastroenterology. 2011;58(112):2140–3.PubMedGoogle Scholar
  32. 32.
    Kasajima A, Pavel M, Darb-Esfahani S, Noske A, Stenzinger A, Sasano H, et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocrine Related Cancer. 2010;18(1):181–92.CrossRefGoogle Scholar
  33. 33.
    Shida T, Kishimoto T, Furuya M, Nikaido T, Koda K, Takano S, et al. Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother Pharmacol. 2009;65(5):889–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Catena L, Bajetta E, Milione M, Ducceschi M, Valente M, Dominoni F, et al. Mammalian target of rapamycin expression in poorly differentiated endocrine carcinoma: clinical and therapeutic future challenges. Targ Oncol. 2011;6(2):65–8.CrossRefGoogle Scholar
  35. 35.
    Wang Y, Ozawa A, Zaman S, Prasad NB, Chandrasekharappa SC, Agarwal SK, et al. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Can Res. 2011;71(2):371–82.CrossRefGoogle Scholar
  36. 36.
    Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA. 2005;102(24):8573–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chiu CW, Nozawa H, Hanahan D. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J Clin Oncol. 2010;28(29):4425–33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pavel ME, Hassler G, Baum U, Hahn EG, Lohmann T, Schuppan D. Circulating levels of angiogenic cytokines can predict tumour progression and prognosis in neuroendocrine carcinomas. Clin Endocrinol. 2005;62(4):434–43.CrossRefGoogle Scholar
  39. 39.
    Yao JC, Pavel M, Lombard-Bohas C, Van Cutsem E, Voi M, Brandt U, et al. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: overall survival and circulating biomarkers from the randomized, phase III RADIANT-3 study. J Clin Oncol. 2016;34(32):1–12.CrossRefGoogle Scholar
  40. 40.
    Zurita AJ. Circulating protein and cellular biomarkers of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol May Suppl abstract. (abstract no. 4079) Google Scholar
  41. 41.
    Qian ZR, Ter-Minassian M, Chan JA, Imamura Y, Hooshmand SM, Kuchiba A, et al. Prognostic significance of MTOR pathway component expression in neuroendocrine tumors. J Clin Oncol. 2013;31(27):3418–25.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li S-C, Essaghir A, Martijn CEC, Lloyd RV, Demoulin J-B, Berg KO, et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol. 2013;26(5):685–96.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24(29):4677–84.CrossRefPubMedGoogle Scholar
  44. 44.
    Lee HW, Ha SY, Roh MS. Altered expression of PTEN and its major regulator microRNA-21 in pulmonary neuroendocrine tumors. Korean J Pathol. 2014;48(1):17.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide lar in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–33.CrossRefPubMedGoogle Scholar
  47. 47.
    Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77.CrossRefPubMedGoogle Scholar
  48. 48.
    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 Trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Investig. 2010;120(8):2858–66.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gallardo A, Lerma E, Escuin D, Tibau A, Oz JMN, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN–PI3K–Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106(8):1367–73.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Li S, Kong Y, Si L, Chi Z, Cui C, Sheng X, et al. Phosphorylation of mTOR and S6RP predicts the efficacy of everolimus in patients with metastatic renal cell carcinoma. BMC Cancer. 2014;14(1):376.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zitzmann K, De Toni EN, Brand S, Göke B, Meinecke J, Spöttl G, et al. The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology. 2007;85(1):54–60.CrossRefPubMedGoogle Scholar
  53. 53.
    Serra S, Zheng L, Hassan M, Phan AT, Woodhouse LJ, Yao JC, et al. The FGFR4-G388R single-nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Research. 2012;72(22):5683–91.CrossRefPubMedGoogle Scholar
  54. 54.
    Cros J, Moati E, Raffenne J, Hentic O, Svrcek M, de Mestier L, et al. Gly388Arg FGFR4 polymorphism is not predictive of everolimus efficacy in well-differentiated digestive neuroendocrine tumors. Neuroendocrinology. 2016;103(5):495–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Zurita AJ, Khajavi M, Wu H-K, Tye L, Huang X, Kulke MH, et al. Circulating cytokines and monocyte subpopulations as biomarkers of outcome and biological activity in sunitinib-treated patients with advanced neuroendocrine tumours. Br J Cancer. 2015;112(7):1199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Grande E, Capdevila J, Castellano D, Teulé A, Durán I, Fuster J, et al. Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann Oncol. 2015;26(9):1987–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Meric-Bernstam F, Akcakanat A, Chen H, Do KA, Sangai T, Adkins F, et al. PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res. 2012;18(6):1777–89.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001;98(18):10314–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Durán I, Kortmansky J, Singh D, Hirte H, Kocha W, Goss G, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 2006;95(9):1148–54.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Moreno A, Akcakanat A, Munsell MF, Soni A, Yao JC, Meric-Bernstam F. Antitumor activity of rapamycin and octreotide as single agents or in combination in neuroendocrine tumors. Endocrine Related Cancer. 2008;15(1):257–66.CrossRefPubMedGoogle Scholar
  61. 61.
    Gagliano T, Bellio M, Gentilin E, Molè D, Tagliati F, Schiavon M, et al. mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocr Relat Cancer. 2013;20(4):463–75.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2017

Authors and Affiliations

  1. 1.Medical Oncology DepartmentUniversity Hospital Ramon y CajalMadridSpain

Personalised recommendations