Advertisement

Clinical and Translational Oncology

, Volume 19, Issue 8, pp 1035–1044 | Cite as

SOX10 is over-expressed in bladder cancer and contributes to the malignant bladder cancer cell behaviors

  • H. Yin
  • C. Qin
  • Y. Zhao
  • Y. Du
  • Z. Sheng
  • Q. Wang
  • Q. Song
  • L. Chen
  • C. Liu
  • T. XuEmail author
Research Article

Abstract

Purpose

To detect the expression level and significance of SOX10 in human bladder cancer.

Methods

Immunohistochemical analyses were performed to assess SOX10 protein level using a bladder cancer tissue microarray (including 59 spots of cancer tissues and 46 spots of paired normal tissues) and 31 specimens and to define the relationship between SOX10 and clinicopathological bladder cancer characteristics in patients. SOX10 protein and mRNA levels in bladder cancer cell lines (T24, 5637, BIU87, EJ) and transitional cell papilloma cell line (RT4) were tested by western blotting and quantitative real-time PCR (q-PCR), respectively. Cell Counting Kit-8 (CCK-8) and colony formation assays were performed to investigate bladder cancer cell proliferation after SOX10 knockdown. The effect of SOX10 on cell migration and invasion was analyzed by Transwell and Matrigel assays. Kaplan–Meier survival curves and Cox regression analyses were used to evaluate SOX10 prognostic significance for bladder cancer patients. The mechanisms by which SOX10 promote bladder cancer progression were examined by western blotting.

Results

SOX10 protein was upregulated in 74.4% of bladder cancer tissues compared with adjacent normal tissues (32.6%). SOX10 protein was also upregulated in malignant cell lines. In addition, high SOX10 expression was related with clinical stage (P = 0.008), T stage (P = 0.004), histological grade (P = 0.002) and lymph node metastasis (P = 0.006). Kaplan–Meier survival curves and Cox regression analyses showed that SOX10 functioned as an independent prognostic factor for overall survival. SOX10 knockdown in bladder cancer cells significantly impacted proliferation, migration and invasion, and SOX10 might promote bladder cancer progression by altering β-catenin and Met expression.

Conclusion

SOX10 was over-expressed in bladder cancer and promoted malignant bladder cancer cell behaviors. SOX10 has potential as a molecular target for bladder cancer treatment.

Keywords

SOX10 Bladder cancer Cell proliferation Invasion Therapeutic target 

Notes

Acknowledgements

We thank the Department of Pathology of Peking University People’s Hospital for their technology support of immunohistochemistry and staining evaluation.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81472393) and Beijing Natural Science Foundation (No. 7152149).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

For this type of study formal consent is not required. This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.PubMedGoogle Scholar
  2. 2.
    Apolo AB, Vogelzang NJ, Theodorescu D. New and promising strategies in the management of bladder cancer. Am Soc Clin Oncol. 2015;35:105–12.Google Scholar
  3. 3.
    Wyszynski A, Tanyos SA, Rees JR, Marsit CJ, Kelsey KT, Schned AR, et al. Body mass and smoking are modifiable risk factors for recurrent bladder cancer. Cancer. 2014;120(3):408–14.PubMedGoogle Scholar
  4. 4.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.PubMedGoogle Scholar
  5. 5.
    Hennings H, Glick AB, Greenhalgh DA, Morgan DL, Strickland JE, Tennenbaum T, et al. Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis. Proc Soc Exp Biol Med. 1993;202(1):1–8.PubMedGoogle Scholar
  6. 6.
    Ramos JR, Pabijan J, Garcia R, Lekka M. The softening of human bladder cancer cells happens at an early stage of the malignancy process. Beilstein J Nanotechnol. 2014;5:447–57.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346(6281):245–50.PubMedGoogle Scholar
  8. 8.
    Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, et al. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol. 2013;379(1):92–106.PubMedGoogle Scholar
  9. 9.
    Miyahara K, Kato Y, Koga H, Dizon R, Lane GJ, Suzuki R, et al. Visualization of enteric neural crest cell migration in SOX10 transgenic mouse gut using time-lapse fluorescence imaging. J Pediatr Surg. 2011;46(12):2305–8.PubMedGoogle Scholar
  10. 10.
    Mollaaghababa R, Pavan WJ. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene. 2003;22(20):3024–34.PubMedGoogle Scholar
  11. 11.
    Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol. 1999;46(3):313–8.PubMedGoogle Scholar
  12. 12.
    Izumi Y, Musha I, Suzuki E, Iso M, Jinno T, Horikawa R, et al. Hypogonadotropic hypogonadism in a female patient previously diagnosed as having waardenburg syndrome due to a sox10 mutation. Endocrine. 2015;49(2):553–6.PubMedGoogle Scholar
  13. 13.
    Okamura K, Oiso N, Tamiya G, Makino S, Tsujioka D, Abe Y, et al. Waardenburg syndrome type IIE in a Japanese patient caused by a novel missense mutation in the SOX10 gene. J Dermatol. 2015;42(12):1211–2.PubMedGoogle Scholar
  14. 14.
    Wenzhi H, Ruijin W, Jieliang L, Xiaoyan M, Haibo L, Xiaoman W, et al. Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II. Int J Pediatr Otorhinolaryngol. 2015;79(10):1718–21.PubMedGoogle Scholar
  15. 15.
    Panaccione A, Chang MT, Carbone BE, Guo Y, Moskaluk CA, Virk RK, et al. NOTCH1 and SOX10 are essential for proliferation and radiation resistance of cancer stem-like cells in adenoid cystic carcinoma. Clin Cancer Res. 2016;22(8):2083–95.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kwon AY, Heo I, Lee HJ, Kim G, Kang H, Heo JH, et al. Sox10 expression in ovarian epithelial tumors is associated with poor overall survival. Virchows Arch. 2016;468(5):597–605.PubMedGoogle Scholar
  17. 17.
    Schmitt AC, Cohen C, Siddiqui MT. Expression of SOX10 in salivary gland oncocytic neoplasms: a review and a comparative analysis with other immunohistochemical markers. Acta Cytol. 2015;59(5):384–90.PubMedGoogle Scholar
  18. 18.
    Lopez-Anido C, Sun G, Koenning M, Srinivasan R, Hung HA, Emery B, et al. Differential Sox10 genomic occupancy in myelinating glia. Glia., 2015;63(11):1897–914.Google Scholar
  19. 19.
    Zhou D, Bai F, Zhang X, Hu M, Zhao G, Zhao Z, et al. SOX10 is a novel oncogene in hepatocellular carcinoma through Wnt/beta-catenin/TCF4 cascade. Tumour Biol. 2014;35(10):9935–40.PubMedGoogle Scholar
  20. 20.
    Tong X, Li L, Li X, Heng L, Xhong L, Su X, et al. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/beta-catenin pathway. Oncotarget. 2014;5(21):10571–83.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Han B, Luan L, Xu Z, Wu B. Clinical significance and biological roles of CRKL in human bladder carcinoma. Tumour Biol. 2014;35(5):4101–6.PubMedGoogle Scholar
  22. 22.
    Sutherland JM, Sobinoff AP, Fraser BA, Redgrove KA, Davidson TL, Siddall NA, et al. RNA binding protein Musashi-1 directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. FASEB J. 2015;29(7):2759–68.PubMedGoogle Scholar
  23. 23.
    Bondurand N, Kobetz A, Pingault V, Lemort N, Encha-razavi F, Couly G, et al. Expression of the SOX10 gene during human development. FEBS Lett. 1998;432(3):168–72.PubMedGoogle Scholar
  24. 24.
    Lee KE, Nam S, Cho EA, Seong I, Lima JK, Lee S, et al. Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genom. 2008;9:408.Google Scholar
  25. 25.
    Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, et al. A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet. 1999;8(9):1785–9.PubMedGoogle Scholar
  26. 26.
    Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000;107(1):1–6.PubMedGoogle Scholar
  27. 27.
    Sham MH, Lui VC, Fu M, Chen B, Tam PK. SOX10 is abnormally expressed in aganglionic bowel of Hirschsprung’s disease infants. Gut. 2001;49(2):220–6.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M. Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet. 2001;10(24):2783–95.PubMedGoogle Scholar
  29. 29.
    Pingault V, Girard M, Bondurand N, Dorkins H, Van Maldergem L, Mowat D, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet. 2002;111(2):198–206.PubMedGoogle Scholar
  30. 30.
    Paratore C, Eichenberger C, Suter U, Sommer L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet. 2002;11(24):3075–85.PubMedGoogle Scholar
  31. 31.
    McKeown SJ, Lee VM, Bronner-Fraser M, Newgreen DF, Farlie PG. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn. 2005;233(2):430–44.PubMedGoogle Scholar
  32. 32.
    Bannykh SI, Stolt CC, Kim J, Perry A, Wegner M. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J Neurooncol. 2006;76(2):115–27.PubMedGoogle Scholar
  33. 33.
    Addo-Yobo SO, Straessle J, Anwar A, Donson AM, Kleinschmidt-demasters BK, Foreman NK. Paired overexpression of ErbB3 and Sox10 in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2006;65(8):769–75.PubMedGoogle Scholar
  34. 34.
    Yokoyama S, Takeda K, Shibahara S. Functional difference of the SOX10 mutant proteins responsible for the phenotypic variability in auditory-pigmentary disorders. J Biochem. 2006;140(4):491–9.PubMedGoogle Scholar
  35. 35.
    Ferletta M, Uhrbom L, Olofsson T, Ponten F, Westermark B. Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B–induced gliomagenesis. Mol Cancer Res. 2007;5(9):891–7.PubMedGoogle Scholar
  36. 36.
    Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291–8.PubMedGoogle Scholar
  37. 37.
    Flammiger A, Besch R, Cook AL, Maier T, Sturm RA, Berking C. SOX9 and SOX10 but not BRN2 are required for nestin expression in human melanoma cells. J Invest Dermatol. 2009;129(4):945–53.PubMedGoogle Scholar
  38. 38.
    Blochin E, Nonaka D. Diagnostic value of Sox10 immunohistochemical staining for the detection of metastatic melanoma in sentinel lymph nodes. Histopathology. 2009;55(5):626–8.PubMedGoogle Scholar
  39. 39.
    Zhao Y, Liu ZG, Tang J, Zou RF, Chen XY, Jiang GM, et al. High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma. Onco Targets Ther. 2016;9:1671–7.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21(6):506–10.PubMedGoogle Scholar
  41. 41.
    Ohtomo R, Mori T, Shibata S, Tsuta K, Maeshima AM, Akazawa C, et al. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Mod Pathol. 2013;26(8):1041–50.PubMedGoogle Scholar
  42. 42.
    Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J, et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol. 2012;14(8):882–90.PubMedGoogle Scholar
  43. 43.
    Ponder BA. Cancer genetics. Nature. 2001;411(6835):336–41.PubMedGoogle Scholar
  44. 44.
    Bartek J. DNA damage response, genetic instability and cancer: from mechanistic insights to personalized treatment. Mol Oncol. 2011;5(4):303–7.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell. 2016;29(6):846–58.PubMedPubMedCentralGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2017

Authors and Affiliations

  • H. Yin
    • 1
  • C. Qin
    • 2
  • Y. Zhao
    • 3
  • Y. Du
    • 1
  • Z. Sheng
    • 1
  • Q. Wang
    • 1
  • Q. Song
    • 1
  • L. Chen
    • 3
  • C. Liu
    • 3
  • T. Xu
    • 1
    Email author
  1. 1.Department of Urology, Peking University People’s HospitalThe Second Clinical Medical College of Peking UniversityBeijingChina
  2. 2.Department of UrologyPeking University International HospitalBeijingChina
  3. 3.Department of UrologyCentral Hospital of Qingdao CityQingdaoChina

Personalised recommendations