Clinical and Translational Oncology

, Volume 19, Issue 1, pp 125–133 | Cite as

Bone marrow-derived cells are recruited by the melanoma tumor with endothelial cells contributing to tumor vasculature

  • R. Bonfim-SilvaEmail author
  • L. E. B. Souza
  • F. U. F. Melo
  • V. C. Oliveira
  • D. A. R. Magalhães
  • H. F. Oliveira
  • D. T. Covas
  • A. M. Fontes
Research Article



Tumor expansion is dependent on neovascularization, a process that requires sustained new vessel formation. Although the critical role of angiogenesis by endothelial sprouting in this process, controversy still prevails on whether angiogenesis involving bone marrow-derived endothelial cells, does contribute to this process. This study aims to evaluate the recruitment of bone marrow-derived cells by the melanoma tumor, including endothelial cells, and if they contribute to angiogenesis.


A chimeric mouse model of GFP bone marrow was used to induce melanoma tumors derived from murine B16-F10 cell line. These tumors were evaluated for the presence of myeloid cells (CD11b), T lymphocytes (CD3, CD4 and CD8) and endothelial cells (VEGFR2 and CD31) derived from bone marrow.


Mice transplanted with GFP+ cells showed significant bone marrow chimerism (90.9 ± 0.87 %) when compared to the GFP transgenic mice (90.66 ± 2.1 %, p = 0.83) demonstrating successful engraftment of donor bone marrow stem/progenitor cells. Analysis of the murine melanoma tumor showed the presence of donor cells in the tumors (3.5 ± 1.7 %) and interestingly, these cells represent endothelial cells (CD31+ cells; 11.5 ± 6.85 %) and myeloid cells (CD11b+ cells; 80 ± 21 %), but also tumor-infiltrating lymphocytes (CD8+ T cells, 13.31 ± 0.2 %; CD4+ T-cells, 2.1 ± 1.2 %). Examination of the tumor endothelium by confocal microscopy suggests the presence of donor CD31+/GFP+ cells in the wall of some blood vessels.


This study demonstrates that bone marrow-derived cells are recruited by the murine melanoma tumor, with myeloid cells and CD4 and CD8 T lymphocytes migrating as antitumor immune response, and endothelial cells participating of the tumor blood vessels formation.


Bone marrow transplantation Endothelial cells Melanoma stroma Angiogenesis Cell migration 



We thank Angelo A. Cardoso, Indiana University School of Medicine, Indianapolis-IN, USA, for the collaboration in scientific discussions; Camila Cristina Branquinho de Oliveira Menezes and Patrícia Vianna Bonini Palma, Hemocentro-FMRP-USP, Ribeirão Preto, Brazil, for support with the flow cytometry; and Sandra Navarro Bresciani, Hemocentro-FMRP-USP, Ribeirão Preto, Brazil, for support with figure design. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the financial support for this study.

Compliance with ethical standards

Ethical standards

All the animal procedures of this study were done in agreement with the ETHICAL PRINCIPLES IN ANIMAL RESEARCH adopted by the Brazilian College of Animal Experimentation (COBEA) and this study, under protocol number 043/2010, was approved by the Medical School of Ribeirão Preto of the University of São Paulo—Ethical Commission of Ethics in Animal Research (CETEA).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gao D, Mittal V. The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med. 2009;15:333–43.CrossRefPubMedGoogle Scholar
  2. 2.
    Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Gkretsi V, Stylianou A, Papageorgis P, Polydorou C, Stylianopoulos T. Remodeling components of the tumor microenvironment to enhance cancer therapy. Front Oncol. 2015;5:214.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hanahan D, Weinberg R. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Roudsari LC, West JL. Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev. 2015 (In press).Google Scholar
  7. 7.
    Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267:10931–4.PubMedGoogle Scholar
  8. 8.
    Furuya M, Yonemitsu Y, Aoki I III. Angiogenesis: complexity of tumor vasculature and microenvironment. Curr Pharm Des. 2009;15:1854–67.CrossRefPubMedGoogle Scholar
  9. 9.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Taketo MM. Role of bone marrow-derived cells in colon cancer: lessons from mouse model studies. J Gastroenterol. 2009;44:93–102.CrossRefPubMedGoogle Scholar
  11. 11.
    Luo D, Liu D, Zhou X, Yang S, Tang C, Liu G. Bone marrow-derived cells contribute to NDEA-induced lung squamous cell carcinoma. Tumour Biol. 2013;34:145–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med. 2005;11:261–2.CrossRefPubMedGoogle Scholar
  13. 13.
    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194–201.CrossRefPubMedGoogle Scholar
  14. 14.
    Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M. G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun. 2002;297:1058–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Wickersheim A, Kerber M, de Miguel LS, Plate KH, Machein MR. Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer. 2009;125:1771–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Ishii S, Tsuji S, Tsujii M, Kanazawa Y, Nishida T, Iijima H, et al. Involvement of bone marrow-derived stromal cells in gastrointestinal cancer development and metastasis. J Gastroenterol Hepatol. 2008;23:S242–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Udagawa T, Puder M, Wood M, Schaefer BC, D’Amato RJ. Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. FASEB J. 2006;20:95–102.CrossRefPubMedGoogle Scholar
  18. 18.
    Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood. 2004;104:2084–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Jung KY, Cho SW, Kim YA, Kim D, Oh B-C, Park DJ, et al. Cancers with higher density of tumor-associated macrophages were associated with poor survival rates. J Pathol Transl Med. 2015;49:318–24.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lewis JS, Landers RJ, Underwood JCE, Harris AL, Lewis CE. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000;192:150–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6:409–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–27.CrossRefPubMedGoogle Scholar
  25. 25.
    Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3:643–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Duda DG, Cohen KS, Kozin SV, Perentes JY, Fukumura D, Scadden DT, et al. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood. 2006;107:2774–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 2006;20:1495–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Stoelting S, Heinze G, Nadrowitz R, Wagner T, Peters SO. Bone marrow-derived endothelial cells contribute to angiogenesis in murine WEHI and JC tumors. Anticancer Res. 2008;28:771–7.PubMedGoogle Scholar
  29. 29.
    Zhou Z, Stewart KS, Yu L, Kleinerman ES. Bone marrow cells participate in tumor vessel formation that supports the growth of Ewing’s sarcoma in the lung. Angiogenesis. 2011;14:125–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21:1546–58.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Purhonen S, Palm J, Rossi D, Kaskenpää N, Rajantie I, Ylä-Herttuala S, et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA. 2008;105:6620–5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2016

Authors and Affiliations

  • R. Bonfim-Silva
    • 1
    • 2
    Email author
  • L. E. B. Souza
    • 1
    • 3
  • F. U. F. Melo
    • 1
    • 3
  • V. C. Oliveira
    • 1
  • D. A. R. Magalhães
    • 1
  • H. F. Oliveira
    • 3
  • D. T. Covas
    • 1
    • 3
  • A. M. Fontes
    • 1
    • 2
  1. 1.National Institute of Science and Technology in Stem Cells and Cell TherapyRibeirão PretoBrazil
  2. 2.Department of Genetics, Medical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  3. 3.Department of Clinical Medicine, Medical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations