Clinical and Translational Oncology

, Volume 18, Issue 9, pp 872–877 | Cite as

The emerging role of Snail1 in the tumor stroma

  • A. Herrera
  • M. Herrera
  • C. PeñaEmail author
Review Article


The transcription factor Snail1 leads to the epithelial–mesenchymal transition by repressing the adherent and tight junctions in epithelial cells. This process is related to an increase of cell migratory and mesenchymal properties during both embryonic development and tumor progression. Although Snail1 expression is very limited in adult animals, emerging evidence has placed Snail at the forefront of medical science. As a transcriptional repressor, Snail1 confers cancer stem cell-like traits on tumor cells and promotes drug resistance, tumor recurrence and metastasis. In this review, we summarize recent reports that suggest the pro-tumorigenic roles of Snail1 expression in tumor stroma. The crosstalk between tumor and stromal cells mediated by Snail1 regulates paracrine communication, pro-tumorigenic abilities of cancer cells, extracellular matrix characteristics and mesenchymal differentiation in cancer stem cells and cancer-associated fibroblasts. Therefore, understanding the regulation and functional roles of Snail1 in the tumor microenvironment will provide us with new therapies for treating metastatic disease.


Snail1 Cancer microenvironment Cancer-associated fibroblasts Extracellular matrix Stem cells Paracrine signals 



M. Eaude helped with the English text. This research is supported by PI12/02037, RD12/0036/0041 from the Instituto de Salud Carlos III-FEDER; by the Fundación Científica AECC; by SAF2010-20750 from the Ministerio de Economía y Competitividad of Spain-FEDER; by S2010/BMD-2344 from the Comunidad de Madrid; and by the Fundación Banco Santander. Cristina Peña is a recipient of a Miguel Servet Contract from the Instituto de Salud Carlos III. All authors state no conflicts of interest. We thank lab members for help and advice throughout this research.

Compliance with ethical standards

This manuscript does not contain clinical studies or patient data. Thus, statements about “Informed consent” or “Research involving Human Participants and/or Animals” are not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Alberga A, Boulay JL, Kempe E, Dennefeld C, Haenlin M. The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. Dev Camb Engl. 1991;111:983–92.Google Scholar
  3. 3.
    Hemavathy K, Hu X, Ashraf SI, Small SJ, Ip YT. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu. Dev Biol. 2004;269:411–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Murray SA, Oram KF, Gridley T. Multiple functions of Snail family genes during palate development in mice. Development. 2007;134:1789–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Batlle R, Alba-Castellón L, Loubat-Casanovas J, Armenteros E, Francí C, Stanisavljevic J, et al. Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene. 2013;32:3381–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119:1429–37.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101:816–29.CrossRefPubMedGoogle Scholar
  9. 9.
    Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest. 2009;119:1420–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Alves CC, Rosivatz E, Schott C, Hollweck R, Becker I, Sarbia M, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J. Pathol. 2007;211:507–15.CrossRefGoogle Scholar
  12. 12.
    Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21:3241–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.CrossRefPubMedGoogle Scholar
  14. 14.
    DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, et al. A novel lung metastasis signature links Wnt Signaling with cancer cell self-renewal and epithelial–mesenchymal transition in basal-like breast cancer. Cancer Res. 2009;69:5364–73.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Elloul S, Bukholt Elstrand M, Nesland JM, Tropé CG, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol. 2010;26:553–67.CrossRefPubMedGoogle Scholar
  17. 17.
    Francí C, Gallén M, Alameda F, Baró T, Iglesias M, Virtanen I, et al. Snail1 Protein in the Stroma as a New Putative Prognosis Marker for Colon Tumours. In: Callaerts P, editor. PLoS One. 2009;4:e5595.Google Scholar
  18. 18.
    Kuphal S, Palm HG, Poser I, Bosserhoff AK. Snail-regulated genes in malignant melanoma. Melanoma Res. 2005;15:305–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12:488–96.CrossRefPubMedGoogle Scholar
  20. 20.
    Vandewalle C. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res. 2005;33:6566–78.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Peña C, García JM, Larriba MJ, Barderas R, Gómez I, Herrera M, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85.CrossRefPubMedGoogle Scholar
  23. 23.
    Peña C, García JM, Silva J, García V, Rodríguez R, Alonso I, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet. 2005;14:3361–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Worthley DL, Giraud AS, Wang TC. Stromal fibroblasts in digestive cancer. Cancer Microenviron. 2010;3:117–25.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.CrossRefPubMedGoogle Scholar
  26. 26.
    Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21:40–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 2011;223:163–77.CrossRefGoogle Scholar
  28. 28.
    Augsten M, Hägglöf C, Peña C, Östman A. A digest on the role of the tumor microenvironment in gastrointestinal cancers. Cancer Microenviron. 2010;3:167–76.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Herrera M, Islam ABMMK, Herrera A, Martin P, Garcia V, Silva J, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res. 2013;19:5914–26.CrossRefPubMedGoogle Scholar
  30. 30.
    Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, et al. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol. 2007;171:1608–18.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2:e7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1:482–97.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Beacham DA, Cukierman E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol. 2005;15:329–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Gout S, Huot J. Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron. 2008;1:69–83.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5:1597–601.CrossRefPubMedGoogle Scholar
  36. 36.
    Qian B-Z, Pollard JW, Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.CrossRefPubMedGoogle Scholar
  37. 37.
    Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R, et al. Expression of Snail protein in tumor-stroma interface. Oncogene. 2006;25:5134–44.PubMedGoogle Scholar
  39. 39.
    Stanisavljevic J, Loubat-Casanovas J, Herrera M, Luque T, Pena R, Lluch A, et al. Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 2015;75:284–95.CrossRefPubMedGoogle Scholar
  40. 40.
    Alba-Castellón L, Batlle R, Francí C, Fernández-Aceñero MJ, Mazzolini R, Peña R, et al. Snail1 expression is required for sarcomagenesis. Neoplasia. 2014;16:413–21.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen S-Y, Shiau A-L, Li Y-T, Lin C-C, Jou I-M, Liu M-F, et al. Transcription factor snail regulates tumor necrosis factor α-mediated synovial fibroblast activation in the rheumatoid joint: snail regulates TNFα-mediated synovial fibroblast activation. Arthritis Rheumatol. 2015;67:39–50.CrossRefPubMedGoogle Scholar
  42. 42.
    Rowe RG, Li X-Y, Hu Y, Saunders TL, Virtanen I, de Herreros AG, et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J Cell Biol. 2009;184:399–408.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rosivatz E, Becker K-F, Kremmer E, Schott C, Blechschmidt K, Höfler H, et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Arch. 2006;448:277–87.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu S, Liao G, Ding J, Ye K, Zhang Y, Zeng L, et al. Dysregulated expression of Snail and E-cadherin correlates with gastrointestinal stromal tumor metastasis. Eur J Cancer Prev. 2014;23:329–35.CrossRefPubMedGoogle Scholar
  45. 45.
    Jouppila-Mättö A, Tuhkanen H, Soini Y, Pukkila M, Närkiö-Mäkelä M, Sironen R, et al. Transcription factor Snail1 expression and poor survival in pharyngeal squamous cell carcinoma. Histol Histopathol. 2011;26:443–9.PubMedGoogle Scholar
  46. 46.
    Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol. 2012;138:847–60.CrossRefPubMedGoogle Scholar
  47. 47.
    Herrera A, Herrera M, Alba-Castellón L, Silva J, García V, Loubat-Casanovas J, et al. Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells. Int J Cancer. 2014;134:2984–90.CrossRefPubMedGoogle Scholar
  48. 48.
    Hu W, Li C, Sun J, Feng B, Zhang D, Ma J, et al. Cancer-associated-fibroblast induces epithelial–mesenchymal transition of gastric cancer cells via activating Thy-1. J Carcinog Mutagen. 2014;5:1–10.Google Scholar
  49. 49.
    Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, et al. A proteomic analysis reveals that snail regulates the expression of the nuclear orphan receptor nuclear receptor subfamily 2 Group F Member 6 (Nr2f6) and Interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteom. 2015;14:303–15.CrossRefGoogle Scholar
  50. 50.
    Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A, et al. proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013;19:6006–19.CrossRefPubMedGoogle Scholar
  51. 51.
    Dvorak HF. Tumors: wounds that do not heal. N Engl J Med. 1986;315:1650–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Lu C, Sun X, Sun L, Sun J, Lu Y, Yu X, et al. Snail mediates PDGF-BB-induced invasion of rat bone marrow mesenchymal stem cells in 3D collagen and chick chorioallantoic membrane. J Cell Physiol. 2013;228:1827–33.CrossRefPubMedGoogle Scholar
  53. 53.
    Shields MA, Dangi-Garimella S, Krantz SB, Bentrem DJ, Munshi HG. Pancreatic cancer cells respond to Type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion. J Biol Chem. 2011;286:10495–504.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG. Interplay between 1-integrin and rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and slug proteins. J Biol Chem. 2012;287:6218–29.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677–87.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Stanisavljevic J, Porta-de-la-Riva M, Batlle R, de Herreros AG, Baulida J. The p65 subunit of NF- B and PARP1 assist Snail1 in activating fibronectin transcription. J Cell Sci. 2011;124:4161–71.CrossRefPubMedGoogle Scholar
  57. 57.
    Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Li X-Y, Zhou X, Rowe RG, Hu Y, Schlaepfer DD, Ilic D, et al. Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells. J Cell Biol. 2011;195:729–38.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lee Y, Kim SH, Lee YJ, Kang ES, Lee B-W, Cha BS, et al. Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell Mol Life Sci. 2013;70:3959–71.CrossRefPubMedGoogle Scholar
  60. 60.
    de Frutos CA, Dacquin R, Vega S, Jurdic P, Machuca-Gayet I. Angela Nieto M. Snail1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J. 2009;28:686–96.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276:75–81.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2015

Authors and Affiliations

  1. 1.“Cancer Cell Signaling” Research GroupHospital Universitario Puerta de Hierro de MajadahondaMadridSpain

Personalised recommendations