Advertisement

Clinical and Translational Oncology

, Volume 18, Issue 8, pp 760–768 | Cite as

Closing faucets: the role of anti-angiogenic therapies in malignant pleural diseases

  • D. Marquez-MedinaEmail author
  • S. Popat
Review Article

Abstract

Malignant pleural effusion (MPE) represents 15–35 % of pleural effusions and markedly worsens the prognosis and quality of life of patients with cancer. Malignant mesothelioma (MM) and lung adenocarcinoma are the most frequent primary and secondary causes, respectively, of MPE. Effective treatments for cancer-related MPE are warranted in order to improve symptoms, reduce the number of invasive pleural procedures, and prolong patient life. Since angiogenesis plays a key role in MPE development, the potential role of bevacizumab and other anti-angiogenic therapies have been explored in this review. No relevant phase III trials have specifically analysed the benefit from adding bevacizumab to platinum-based chemotherapy in lung cancer-related MPE. However, small retrospective series reported 71.4–93.3 % MPE control rate, a reduction in invasive procedures, and a safe profile with this combination. Being approved for the first-line treatment of non-squamous advanced NSCLC, the addition of bevacizumab should be considered for patients presenting with MPE. In addition, further studies in this are recommended. In MM, the addition of bevacizumab to platinum-based chemotherapy did not meet primary endpoints in two phase II trials. However, the beneficial results on OS reported in comparison with historical cohorts and the statistically significant benefit on PFS and OS observed in the phase III MAPS trial foretell an eventual role for the combination of platinum/pemetrexed/bevacizumab as front-line systemic therapy for pleural MM. To date, no other anti-angiogenic drug has showed significant benefit in the treatment of patients with either MPE or MM. However, new promising drugs such as ramucirumab or recombinant human endostar warrant further investigation.

Keywords

Anti-angiogenesis Bevacizumab Malignant pleural effusion Malignant mesothelioma Non-small cell lung cancer 

Notes

Acknowledgments

The Spanish Society of Medical Oncology (SEOM) supported the collaboration of D.M. as Honorary Observer in the Royal Marsden Hospital. S.P. acknowledges NHS funding to the Royal Marsden Hospital/Institute of Cancer Research NIHR Biomedical Research Centre.

Compliance with ethical standards

Conflict of interest

S.P. is consultant to AstraZeneca, Boehringer Ingelheim, BMS, Lilly, MSD, Novartis, Pfizer, and Roche. D.M. has participated as speaker and advisor for Roche, Boehringer Ingelheim, Astra-Zeneca, Lilly, Novartis, and Pierre-Fabre events.

Informed consent and participants

The present review did not involve human participants or animals. So, the asking of informed consent was not necessary.

References

  1. 1.
    Egan AM, McPhillips D, Sarkar S, Breen DP. Malignant pleural effusion. QJM. 2014;107:179–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Lee YC, Light RW. Management of malignant pleural effusions. Respirology. 2004;9:148–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Zamboni MM, da Silva CT Jr, Baretta R, Cunha ET, Cardoso GP. Important prognostic factors for survival in patients with malignant pleural effusion. BMC Pulm Med. 2015;15:29.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bradshaw M, Mansfield A, Peikert T. The role of vascular endothelial growth factor in the pathogenesis, diagnosis and treatment of malignant pleural effusion. Curr Oncol Rep. 2013;15:207–16.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fiorelli A, Vicidomini G, Di Domenico M, Napolitano F, Messina G, Morgillo F, et al. Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 2011;12:420–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Sack U, Hoffmann M, Zhao XJ, Chan KS, Hui DSC, Gosse H, et al. Vascular endothelial growth factor in pleural effusions of different origin. Eur Respir J. 2005;25:600–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Bates DO. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res. 2010;87:262–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Duysinx BC, Corhay JL, Hubin L, Nguyen D, Henket M, Louis R. Diagnostic value of interleukine-6, transforming growth factor-beta 1 and vascular endothelial growth factor in malignant pleural effusions. Respir Med. 2008;102:1708–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Gkiozos I, Tsagouli S, Charpidou A, Grapsa D, Kainis E, Gratziou C, et al. Levels of vascular endothelial growth factor in serum and pleural fluid are independent predictors of survival in advanced non-small cell lung cancer: results of a prospective study. Anticancer Res. 2015;35:1129–37.PubMedGoogle Scholar
  10. 10.
    Zhang Y, Yu LK, Lu GJ, Xia N, Xie HY, Hu W, et al. Prognostic values of VEGF and endostatin with malignant pleural effusions in patients with lung cancer. Asian Pac J Cancer Prev. 2014;15:8435–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Qian Q, Zhan P, Sun WK, Zhang Y, Song Y, Yu LK. Vascular endothelial growth factor and soluble intercellular adhesion molecule-1 in lung adenocarcinoma with malignant pleural effusion: correlations with patient survival and pleural effusion control. Neoplasma. 2012;59:433–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Y, Yu LK, Xia N. Evaluation of serum and pleural levels of endostatin and vascular epithelial growth factor in lung cancer patients with pleural effusion. Asian Pac J Trop Med. 2012;5:239–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Cheng D, Kong H, Li Y. Prognostic values of VEGF and IL-8 in malignant pleural effusion in patients with lung cancer. Biomarkers. 2013;18:386–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Choi JH, Kim HC, Lim HY, Nam DK, Kim HS, Yi JW, et al. Vascular endothelial growth factor in the serum of patients with non-small cell lung cancer: correlation with platelet and leukocyte counts. Lung Cancer. 2001;33:171–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Pichelmayer O, Zielinski C, Raderer M. Response of a nonmalignant pleural effusion to bevacizumab. N Engl J Med. 2005;353:740–1.CrossRefPubMedGoogle Scholar
  16. 16.
    Nasreen N, Mohammed KA, Lai Y, Antony VB. Receptor EphA2 activation with ephrin A1 suppresses growth of malignant mesothelioma (MM). Cancer Lett. 2007;258:215–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Hamed EA, El-Noweihi AM, Mohamed AZ, Mahmoud A. Vasoactive mediators (VEGF and TNF-alpha) in patients with malignant and tuberculous pleural effusions. Respirology. 2004;9:81–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Hirayama N, Tabata C, Tabata R, Maeda R, Yasumitsu A, Yamada S, et al. Pleural effusion VEGF levels as a prognostic factor of malignant pleural mesothelioma. Respir Med. 2011;105:e137–42.CrossRefGoogle Scholar
  19. 19.
    Chen D, Li X, Zhao H, Fu Y, Yao F, Hu J, et al. The efficacy of pemetrexed and bevacizumab intrapleural injection for malignant pleural mesothelioma-mediated malignant pleural effusion. Indian J Cancer. 2014;51:S82–5.CrossRefGoogle Scholar
  20. 20.
    Lieser EA, Croghan GA, Nevala WK, Bradshaw MJ, Markovic SN, Mansfield AS. Up-regulation of pro-angiogenic factors and establishment of tolerance in malignant pleural effusions. Lung Cancer. 2013;82:63–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Maa HC, Chao TT, Wang CY, Pei D, Liang YJ, Chen YL. VEGF-D as a marker in the aid of malignant metastatic pleural effusion diagnosis. Appl Immunohistochem Mol Morphol. 2015;23:209–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Ribeiro SC, Vargas FS, Antonangelo L, Marchi E, Genofre EH, Acencio MM, et al. Monoclonal anti-vascular endothelial growth factor antibody reduces fluid volume in an experimental model of inflammatory pleural effusion. Respirology. 2009;14:1188–93.CrossRefPubMedGoogle Scholar
  23. 23.
    Shen YC, Liu MQ, Wan C, Chen L, Wang T, Wen FQ. Diagnostic accuracy of vascular endothelial growth factor for malignant pleural effusion: a meta-analysis. Exp Ther Med. 2012;3:1072–6.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Hooper CE, Elvers KT, Welsh GI, Millar AB, Maskell NA. VEGF and sVEGFR-1 in malignant pleural effusions: association with survival and pleurodesis outcomes. Lung Cancer. 2012;77:443–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Demirag F, Unsal E, Yilmaz A, Caglar A. Prognostic significance of vascular endothelial growth factor, tumor necrosis, and mitotic activity index in malignant pleural mesothelioma. Chest. 2005;128:3382–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Karrison T, Kindler HL, Gandara DR, Lu C, Guterz TL, Nichols K, et al. Final analysis of a multi-center, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab or placebo in patients (pts) with malignant mesothelioma. J Clin Oncol. 2007;25:S391.Google Scholar
  27. 27.
    Yano S, Herbst RS, Shinohara H, Knighton B, Bucana CD, Killion JJ, et al. Treatment for malignant pleural effusion of human lung adenocarcinoma by inhibition of vascular endothelial growth factor receptor tyrosine kinase phosphorylation. Clin Cancer Res. 2000;6:957–65.PubMedGoogle Scholar
  28. 28.
    Frederick B, Gustafson D, Bianco C, Ciardello F, Dimery I, Raben D. ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy. Int J Radiat Oncol Biol Phys. 2006;64:33–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Matsumori Y, Yano S, Goto H, Nakataki E, Wedge SR, Ryan AJ, et al. ZD6474, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, inhibits growth of experimental lung metastasis and production of malignant pleural effusions in a non-small cell lung cancer model. Oncol Res. 2006;16:15–26.PubMedGoogle Scholar
  30. 30.
    Shibuya K, Komaki R, Shintani T, Itasaka S, Ryan A, Jürgensmeier JM, et al. Targeted therapy against VEGFR and EGFR with ZD6474 enhances the therapeutic efficacy of irradiation in an orthotopic model of human non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;69:1534–43.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bae SH, Hwang JY, Kim WJ, Yoon HH, Kim JM, Nam YH, et al. A case of cardiac amyloidosis with diuretic-refractory pleural effusions treated with bevacizumab. Korean Circ J. 2010;40:671–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kitamura K, Kubota K, Ando M, Takahashi S, Nishijima N, Sugano T, et al. Bevacizumab plus chemotherapy for advanced non-squamous non-small-cell lung cancer with malignant pleural effusion. Cancer Chemother Pharmacol. 2013;71:457–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Masago K, Fujimoto D, Fujita S, Hata A, Kaji R, Ohtsuka K, et al. Response to bevacizumab combination chemotherapy of malignant pleural effusions associated with non-squamous non-small-cell lung cancer. Mol Clin Oncol. 2015;3:415–9.PubMedGoogle Scholar
  34. 34.
    Fujii M, Iwakami SI, Ihara H, Hara M, Iwakami N, Ishiwata T, et al. Efficacy and safety of chemotherapy containing bevacizumab in patients with non-small cell lung cancer with malignant pleural effusion. Respirology. 2013;18:87.Google Scholar
  35. 35.
    Tamiya M, Tamiya A, Yamadori T, Nakao K, Asami K, Yasue T, et al. Phase2 study of bevacizumab with carboplatin–paclitaxel for non-small cell lung cancer with malignant pleural effusion. Med Oncol. 2013;30:676.CrossRefPubMedGoogle Scholar
  36. 36.
    Massarelli E, Onn A, Marom EM, Alden CM, Liu DD, Tran HT, et al. Vandetanib and indwelling pleural catheter for non-small-cell lung cancer with recurrent malignant pleural effusion. Clin Lung Cancer. 2014;15:379–86.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mulder SF, Boers-Sonderen MJ, van der Heijden HF, Vissers KC, Punt CJ, van Herpen CM. A phase II study of cediranib as palliative treatment in patients with symptomatic malignant ascites or pleural effusion. Target Oncol. 2014;9:331–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu M, Shen Y, Ruan M, Li M, Chen L. Notable decrease of malignant pleural effusion after treatment with sorafenib in radioiodine-refractory follicular thyroid carcinoma. Thyroid. 2014;24:1179–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hama M, Komatsu Y, Hachiya T. A case of lung cancer showing marked reduction of pleural effusion by bevacizumab in combination with carboplatin and paclitaxel. Gan To Kagaku Ryoho. 2011;38:1877–9.PubMedGoogle Scholar
  41. 41.
    Du N, Li X, Li F, Zhao H, Fan Z, Ma J, et al. Intrapleural combination therapy with bevacizumab and cisplatin for non-small cell lung cancer-mediated malignant pleural effusion. Oncol Rep. 2013;29:2332–40.PubMedGoogle Scholar
  42. 42.
    Santoro A, O’Brien ME, Stahel RA, Nackaerts K, Baas P, Karthaus M, et al. Pemetrexed plus cisplatin or pemetrexed plus carboplatin for chemonaive patients with malignant pleural mesothelioma: results of the International Expanded Access Program. J Thorac Oncol. 2008;3:756–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Kalmadi SR, Rankin C, Kraut MJ, Jacobs AD, Petrylak DP, Adelstein DJ, et al. Gemcitabine and cisplatin in unresectable malignant mesothelioma of the pleura: a phase II study of the Southwest Oncology Group (SWOG 9810). Lung Cancer. 2008;60:259–63.CrossRefPubMedGoogle Scholar
  44. 44.
    Li Q, Yano S, Ogino H, Wang W, Uehara H, Nishioka Y, et al. The therapeutic efficacy of anti vascular endothelial growth factor antibody, bevacizumab, and pemetrexed against orthotopically implanted human pleural mesothelioma cells in severe combined immunodeficient mice. Clin Cancer Res. 2007;13:5918–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Jackman DM, Kindler HL, Yeap BY, Fidias P, Salgia R, Lucca J, et al. Erlotinib plus bevacizumab in previously treated patients with malignant pleural mesothelioma. Cancer. 2008;113:808–14.CrossRefPubMedGoogle Scholar
  46. 46.
    Ceresoli GL, Zucali PA, Mencoboni M, Botta M, Grossi F, Cortinovis D, et al. Phase II study of pemetrexed and carboplatin plus bevacizumab as first-line therapy in malignant pleural mesothelioma. Br J Cancer. 2013;109:552–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dowell J, Dunphy FR, Taub RN, Gerber DE, Ngov L, Yan J, et al. A multicenter phase II study of pemetrexed, cisplatin and bevacizumab in patients with advanced malignant mesothelioma. Lung Cancer. 2012;77:567–71.CrossRefPubMedGoogle Scholar
  48. 48.
    Zalcman G, Mazieres J, Scherpereel A, Margery J, Moro-Sibilot D, Parienti JJ, et al. IFCT-GFPC-0701 MAPS trial, a multicenter randomized phase II–III trial of pemetrexed-cisplatin with or without bevacizumab in patients with malignant pleural mesothelioma. J Clin Oncol. 2012;30:STPS7112.Google Scholar
  49. 49.
    Zalcman G, Mazières J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, et al. Bevacizumab 15 mg/kg plus cisplatin-pemetrexed (CP) triplet versus CP doublet in Malignant Pleural Mesothelioma (MPM): results of the IFCT-GFPC-0701 MAPS randomized phase 3 trial. J Clin Oncol. 2015;33:S7500.Google Scholar
  50. 50.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27:1227–34.CrossRefPubMedGoogle Scholar
  51. 51.
    Barlesi F, Scherpereel A, Rittmeyer A, Pazzola A, Ferrer Tur N, Kim JH, et al. Randomized phase III trial of maintenance bevacizumab with or without pemetrexed after first-line induction with bevacizumab, cisplatin, and pemetrexed in advanced nonsquamous non-small-cell lung cancer: AVAPERL (MO22089). J Clin Oncol. 2013;31:3004–11.CrossRefPubMedGoogle Scholar
  52. 52.
    Patel JD, Socinski MA, Garon EB, Reynolds CH, Spigel DR, Olsen MR, et al. PointBreak: a randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. J Clin Oncol. 2013;31:4349–57.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sartori S, Tassinari D, Ceccotti P, Tombesi P, Nielsen I, Trevisani L, et al. Prospective randomized trial of intrapleural bleomycin versus interferon alfa-2b via ultrasound-guided small-bore chest tube in the palliative treatment of malignant pleural effusions. J Clin Oncol. 2004;22:1228–33.CrossRefPubMedGoogle Scholar
  54. 54.
    Ikuta K, Yano S, Trung VT, Hanibuchi M, Wang W, Yamada T, et al. E7080, a multityrosine kinase inhibitor, suppresses the progression of malignant pleural mesothelioma with different proangiogenic cytokine production profiles. Clin Cancer Res. 2009;15:7229–37.CrossRefPubMedGoogle Scholar
  55. 55.
    Jahan T, Gu L, Kratzke R, Dudek A, Otterson GA, Wang X, et al. Vatalanib in malignant mesothelioma: a phase II trial by the Cancer and Leukemia Group B (CALGB 30107). Lung Cancer. 2012;76:393–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Kindler HL, Vogelzang NJ, Chien K, Stadler WM, Karczmar G, Heimann R, et al. SU5416 in malignant mesothelioma: a University of Chicago phase II consortium study. Proc Am Soc Clin Oncol. 2001;20:S1359.Google Scholar
  57. 57.
    Janne PA, Wang XF, Krug LM, Hodgson L, Vokes EE, Kindler HL. Sorafenib in malignant pleural mesothelioma (MM): a phase II trial of the Cancer and Leukemia Group B (CALGB 30307). J Clin Oncol. 2007;25:S7707.CrossRefGoogle Scholar
  58. 58.
    Baas P, Boogerd W, Dalesio O, Haringhuizen A, Custers F, Van Zandwijk N. Thalidomide in patients with malignant pleural mesothelioma. Lung Cancer. 2005;48:291–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Baas P, Buikhuisen W, Dalesio O, Vincent A, Pavlakis N, Van Klaveren R, et al. A multicenter, randomized phase III maintenance study of thalidomide (arm A) versus observation (arm B) in patients with malignant pleural mesothelioma (MPM) after induction chemotherapy. J Clin Oncol. 2011;29:S7006.Google Scholar
  60. 60.
    Yanagawa H, Haku T, Hiramatsu K, Nokihara H, Takeuchi E, Yano S, et al. Intrapleural instillation of interferon gamma in patients with malignant pleurisy due to lung cancer. Cancer Immunol Immunother. 1997;45:93–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Boutin C, Viallat JR, Van Zandwijk N, Douillard JT, Paillard JC, Guerin JC, et al. Activity of intrapleural recombinant gamma-interferon in malignant mesothelioma. Cancer. 1991;67:2033–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Boutin C, Nussbaum E, Monnet I, Bignon J, Vanderschueren R, Guerin JC, et al. Intrapleural treatment with recombinant gamma-interferon in early stage malignant pleural mesothelioma. Cancer. 1994;74:2460–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Psallidas I, Karabela SP, Moschos C, Sherrill TP, Kollintza A, Maqkouta S, et al. Specific effects of bortezomib against experimental malignant pleural effusion: a preclinical study. Mol Cancer. 2010;10(9):56.CrossRefGoogle Scholar
  64. 64.
    Stathopoulos GT, Kalomenidis I. Malignant pleural effusion: tumor-host interactions unleashed. Am J Respir Crit Care Med. 2012;186:487–92.CrossRefPubMedGoogle Scholar
  65. 65.
    Ma X, Yao Y, Yuan D, Liu H, Wang S, Zhou C, et al. Recombinant human endostatin endostar suppresses angiogenesis and lymphangiogenesis of malignant pleural effusion in mice. PLoS One. 2012;7:e53449.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fang SC, Zhang HT, Hu HD, Wang CY, Zhang YM. Effect of Endostar combined with angiopoietin-2 inhibitor on malignant pleural effusion in mice. Med Oncol. 2015;32:410.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen X, Liu Y, Yin Y, Jin S, Ping G, Røe OD, et al. Recombinant human endostatin (endostar) decreased recurrent ascites, pleural fluid and ascitic VEGF in a case of advanced mesothelioma. J Chemother. 2012;24:231–6.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2015

Authors and Affiliations

  1. 1.Medical Oncology DepartmentArnau de Vilanova University HospitalLleidaSpain
  2. 2.Lung Cancer UnitRoyal Marsden HospitalLondonUK

Personalised recommendations