Skip to main content
Log in

Visceral obesity stimulates anaphase bridge formation and spindle assembly checkpoint dysregulation in radioresistant oesophageal adenocarcinoma

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 20 November 2015

Abstract

Purpose

Oesophageal adenocarcinoma is an exemplar model of obesity-associated cancer. Locally advanced disease is treated with neoadjuvant chemoradiotherapy, and survival rates are highest in patients demonstrating a pathological response following neoadjuvant therapy. Given that 55 % of oesophageal adenocarcinoma patients are obese, uncovering the effect of adipose tissue on radioresponse is clinically relevant. This study investigates if adipose tissue activates genomic instability events in radioresponsive (OE33P) and radioresistant (OE33R) oesophageal cancer cell lines and tumour samples.

Methods

OE33R and OE33P were cultured with adipose-conditioned media derived from oesophageal adenocarcinoma patients (n = 10). Anaphase bridges, a marker of genomic instability, were enumerated in both cell lines following treatment with adipose media, and normalised to cell number. Genomic instability is regulated by the spindle assembly complex. Expression of two spindle assembly complex genes (MAD2L2, BUB1B) was assessed using qPCR, and validated in patient tumour specimens from viscerally obese (n = 46) and nonobese patients (n = 41).

Results

Adipose-conditioned media increased anaphase bridging in OE33R (p < 0.0001), with a threefold increase in OE33R compared to OE33P (p < 0.01). Levels of anaphase bridges in OE33R cells correlated with visceral obesity status as measured by waist circumference (R = 0.709, p = 0.03) and visceral fat area (R = 0.794, p = 0.006). Adipose tissue altered expression of MAD2L2 in vitro. In vivo, MAD2L2 expression was higher in viscerally obese oesophageal adenocarcinoma patients compared with nonobese patients (p < 0.05).

Conclusions

Anaphase bridge levels are influenced by obesity and radiosensitivity status in oesophageal adenocarcinoma. Furthermore, visceral adipose-conditioned media stimulates dysregulation of the spindle assembly complex in oesophageal adenocarcinoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Doyle SL, Donohoe CL, Lysaght J, Reynolds JV. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc. 2012;71:181–9.

    Article  CAS  PubMed  Google Scholar 

  2. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. New Engl J Med. 2003;348:1625–38.

    Article  PubMed  Google Scholar 

  3. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29:283–9.

    Article  CAS  PubMed  Google Scholar 

  5. O’Sullivan JN, Bronner MP, Brentnall TA, Finley JC, Shen WT, Emerson S, et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet. 2002;32:280–4.

    Article  PubMed  Google Scholar 

  6. Finley JC, Reid BJ, Odze RD, Sanchez CA, Galipeau P, Li S, et al. Chromosomal instability in Barrett’s esophagus is related to telomere shortening. Cancer Epidemiol Biomarkers Prev. 2006;15:1451–7.

    Article  CAS  PubMed  Google Scholar 

  7. McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics. 1941;26:234–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li M, Zhang P. Spindle assembly checkpoint, aneuploidy and tumorigenesis. Cell Cycle. 2009;8:3440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 2011;71:1858–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swanton C, Nicke B, Schuett M, Eklund AD, Ng C, Li Q, et al. Chromosomal instability determines taxane response. Proc Natl Acad Sci USA. 2009;106:8671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29:283–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ladoire S, Bonnetain F, Gauthier M, Zanetta S, Petit JM, Guiu S, et al. Visceral fat area as a new independent predictive factor of survival in patients with metastatic renal cell carcinoma treated with antiangiogenic agents. Oncologist. 2011;16:71–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guiu B, Petit JM, Bonnetain F, Ladoire S, Guiu S, Cercueil JP, et al. Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut. 2010;59:341–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ronellenfitsch U, Schwarzbach M, Hofheinz R, Kienle P, Kieser M, Slanger TE, Jensen K, et al. Perioperative chemo(radio)therapy versus primary surgery for resectable adenocarcinoma of the stomach, gastroesophageal junction, and lower esophagus. Cochrane Database Syst. Rev. 2013;5:CD008107.

    PubMed  Google Scholar 

  15. Sjoquist KM, Burmeister BH, Smithers BM, Zalcberg JR, Simes RJ, Barbour A, et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 2011;12:681–92.

    Article  PubMed  Google Scholar 

  16. Van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.

    Article  PubMed  Google Scholar 

  17. Lysaght J, van der Stok EP, Allott EH, Casey R, Donohoe CL, Howard JM, et al. Pro-inflammatory and tumour proliferative properties of excess visceral adipose tissue. Cancer Lett. 2011;312:62–72.

    Article  CAS  PubMed  Google Scholar 

  18. Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG. Alterations in DNA repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiat Res. 2010;174:703–11.

    Article  CAS  PubMed  Google Scholar 

  19. Doyle SL, Bennett AM, Donohoe CL, Mongan AM, Howard JM, Lithander FE, et al. Establishing computed tomography-defined visceral fat area thresholds for use in obesity-related cancer research. Nutr Res. 2013;33:171–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ibrahim NB. ACP. Best practice no 155. Guidelines for handling oesophageal biopsies and resection specimens and their reporting. J Clin Pathol. 2000;53:89–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fried SK, Moustaid-Moussa N. Culture of adipose tissue and isolated adipocytes. Methods Mol Biol. 2001;155:197–212.

    CAS  PubMed  Google Scholar 

  22. Pampalona J, Frias C, Genesca A, Tusell L. Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLoS Genet. 2012;8:e1002679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, et al. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet. 2000;26:85–8.

    Article  CAS  PubMed  Google Scholar 

  24. McCaul JA, Gordon KE, Minty F, Fleming J, Parkinson EK. Telomere dysfunction is related to the intrinsic radio-resistance of human oral cancer cells. Oral Oncol. 2008;44:261–9.

    Article  CAS  PubMed  Google Scholar 

  25. Acilan C, Potter DM, Saunders WS. DNA repair pathways involved in anaphase bridge formation. Genes Chromosom Cancer. 2007;46:522–31.

    Article  CAS  PubMed  Google Scholar 

  26. Meyerhardt JA, Tepper JE, Niedzwiecki D, Hollis DR, McCollum AD, Brady D, et al. Impact of body mass index on outcomes and treatment-related toxicity in patients with stage II and III rectal cancer: findings from Intergroup Trial 0114. J Clin Oncol. 2004;22:648–57.

    Article  PubMed  Google Scholar 

  27. Efstathiou JA, Chen M-HH, Renshaw AA, Loffredo MJ, D’Amico AV. Influence of body mass index on prostate-specific antigen failure after androgen suppression and radiation therapy for localized prostate cancer. Cancer. 2007;109:1493–8.

    Article  PubMed  Google Scholar 

  28. Wachsberger P, Burd R, Dicker AP. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms. Clin Cancer Res. 2003;9:1957–71.

    CAS  PubMed  Google Scholar 

  29. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D’Angiolella V, Santarpia C, Grieco D. Oxidative stress overrides the spindle checkpoint. Cell Cycle. 2007;6:576–9.

    Article  PubMed  Google Scholar 

  31. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell. 2007;11:9–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prencipe M, Fitzpatrick P, Gorman S, Tosetto M, Klinger R, Furlong F, et al. Cellular senescence induced by aberrant MAD2 levels impacts on paclitaxel responsiveness in vitro. Br J Cancer. 2009;101:1900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, et al. Mutations of mitotic checkpoint genes in human cancers. Nature. 1998;392:300–3.

    Article  CAS  PubMed  Google Scholar 

  34. Doak SH, Jenkins GJ, Parry EM, Griffiths AP, Baxter JN, Parry JM. Differential expression of the MAD2, BUB1 and HSP27 genes in Barrett’s oesophagus-their association with aneuploidy and neoplastic progression. Mutat Res. 2004;547:133–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the oesophageal surgical team at St. James’s hospital. We would also like to thank all the patients who gave their consent for sample procurement. This work was supported by funding from the Health Research Board (HPF/2011/59).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O’Sullivan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mongan, A.M., Lynam-Lennon, N., Casey, R. et al. Visceral obesity stimulates anaphase bridge formation and spindle assembly checkpoint dysregulation in radioresistant oesophageal adenocarcinoma. Clin Transl Oncol 18, 632–640 (2016). https://doi.org/10.1007/s12094-015-1411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1411-y

Keywords

Navigation