Skip to main content

Advertisement

Log in

MicroRNA-33b inhibits tumor cell growth and is associated with prognosis in colorectal cancer patients

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

To explore the role of miR-33b in colorectal cancer (CRC) and the correlation between its expression and prognosis.

Methods

The expressions of miR-33b between CRC tissues and normal tissues were measured by real-time PCR. The effects of miR-33b on cell proliferation and cell cycle progression were detected by MTT assay, colony formation assay and flow cytometry. The potential regulations of miR-33b on multiple genes expression were verified by Western blot. Furthermore, the association of miR-33b with CRC clinicopathologic features and prognosis was analyzed by Chi-squared test and Kaplan–Meier tests.

Results

MiR-33b was downregulated in CRC compared with normal colorectal samples and miR-33b inhibited tumor cell growth and induced cell cycle arrest. Western blot assays and correlation analysis showed that miR-33b could regulate multiple growth-related genes. Moreover, the expression of miR-33b was associated with TNM stage and tumor size, and CRC patients with high miR-33b expression had a better prognosis.

Conclusion

Our data suggest that miR-33b functions as a tumor suppressor gene in CRC through regulating cell proliferation and cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Yang L, Parkin DM, Li L, Chen Y. Time trends in cancer mortality in China: 1987–1999. Int J Cancer. 2003;106(5):771–83.

    Article  CAS  PubMed  Google Scholar 

  3. Sung JJY, Lau JYW, Goh KL, Leung WK. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 2005;6(11):871–6.

    Article  PubMed  Google Scholar 

  4. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, et al. microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol Cancer. 2014;13:124.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Investig. 2014;124(4):1853–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiang KM, Li XR. MiR-133b acts as a tumor suppressor and negatively regulates TBPL1 in colorectal cancer cells. Asian Pac J Cancer Prev. 2014;15(8):3767–72.

    Article  PubMed  Google Scholar 

  8. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.

    Article  CAS  PubMed  Google Scholar 

  9. Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramírez CM, Chamorro-Jorganes A, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle. 2012;11(5):922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomas M, Lange-Grunweller K, Weirauch U, Gutsch D, Aigner A, Grunweller A, et al. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene. 2012;31(7):918–28.

    Article  CAS  PubMed  Google Scholar 

  11. Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71(15):5214–24.

    Article  CAS  PubMed  Google Scholar 

  12. Sobin LH, Gospodarowicz MK, Wittekind Ch. TNM classification of malignant tumors. 7th ed. Oxford: Wiley-Blackwell; 2009.

    Google Scholar 

  13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  14. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA. 2011;108(22):9232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miyachi K, Sawada Y, Shida Y, Sugawara A, Hisatomi H. Lipogenic gene expression profile in patients with gastric cancer. Mol Clin Oncol. 2013;1(5):825–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res. 2013;19(22):6173–82.

    Article  CAS  PubMed  Google Scholar 

  17. Schafer KA. The cell cycle: a review. Vet Pathol. 1998;35(6):461–78 (Online).

    Article  CAS  PubMed  Google Scholar 

  18. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;11(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  19. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ono K, Horie T, Nishino T, Baba O, Kuwabara Y, Yokode M, et al. MicroRNA-33a/b in lipid metabolism—novel “thrifty” models. Circ J. 2015;79(2):278–84.

    Article  PubMed  Google Scholar 

  21. Giovannucci E. Metabolic syndrome, hyperinsulinemia, and colon cancer: a review. Am J Clin Nutr. 2007;86(3):836S–42S.

    CAS  Google Scholar 

  22. Zhao W, Guan J, Horswell R, Li W, Wang Y, Wu X, et al. HDL cholesterol and cancer risk among patients with type 2 diabetes. Diabetes Care. 2014;37(12):3196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strickler HD, Wylie-Rosett J, Rohan T, Hoover DR, Smoller S, Burk RD, et al. The relation of type 2 diabetes and cancer. Diabetes Technol Ther. 2001;3(2):263–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sun.

Additional information

W. Liao and C. Gu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Gu, C., Huang, A. et al. MicroRNA-33b inhibits tumor cell growth and is associated with prognosis in colorectal cancer patients. Clin Transl Oncol 18, 449–456 (2016). https://doi.org/10.1007/s12094-015-1388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1388-6

Keywords

Navigation