Skip to main content

Advertisement

Log in

Estrogen combined with progesterone decreases cell proliferation and inhibits the expression of Bcl-2 via microRNA let-7a and miR-34b in ovarian cancer cells

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated the effect of estrogen (E2), progesterone (P4), and the combination of them (E2 + P4) on survival rate, apoptosis, and the expressions of Bcl-2, hsa-let-7a and has-miR-34b in primary ovarian cancer cells to provide new clues for the clinical treatments of ovarian cancer.

Methods

The primary ovarian cancer cells from 60 cases of clinical ovarian cancer tissues were isolated and then cultured. The survival rate of ovarian cancer cells after the treatment of E2, P4 and E2 + P4 was analyzed by MTT assay. Cell apoptosis rate and cell cycle were measured by FACS analysis. Moreover, the relative abundance of Bcl-2 and microRNAs (let-7a, miR-34b) expressions were detected by quantitative real-time PCR (qRT-PCR) and Western blotting.

Results

Low concentrations of estrogen (10−10, 10−8, 10−6 mol/L) did not affect the proliferation of ovarian cancer cells. However, the high concentration of estrogen (10−4 mol/L) inhibited survival rate of ovarian cancer cells. Progesterone (10−4 mol/L) inhibited the proliferation of cancer cells. The combination of estrogen and progesterone significantly inhibited the survival rate of ovarian cancer cells with a time- and dose-dependent manner. High concentration of estrogen combined with progesterone (E2 + P4) induced apoptosis of ovarian cancer cells. E2 + P4 promoted the expression of let-7a and miR-34b and reduced the expression of Bcl-2 in ovarian cancer cells. When the expression of let-7a or/and miR-34b was inhibited using miRNA inhibitors, E2 + P4 treatment did not change the protein level of Bcl-2.

Conclusion

E2 + P4 significantly inhibited the cell survival, promoted the cell apoptosis, induced the expression of let-7a and miR-34b, and reduced the expression of Bcl-2 in ovarian cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leung PC, Choi JH. Endocrine signaling in ovarian surface epithelium and cancer. Hum Reprod Update. 2007;2:143–62.

    Google Scholar 

  2. Choi KC, Kang SK, Tai CJ, Auersperg N, Leung PC. Estradiol up-regulates anti-apoptotic Bcl-2 messenger ribonucleic acid and protein in tumorigenic ovarian surface epithelium cells. Endocrinology. 2001;142(6):2351–60.

    PubMed  CAS  Google Scholar 

  3. Song J, Fadiel A, Edusa V, Chen Z, So J, Sakamoto H, et al. Estradiol-induced ezrin over-expression in ovarian cancer: a new signaling domain for estrogen. Cancer Lett. 2005;220(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  4. Yousef GM, Fracchioli S, Scorilas A, Borgoño CA, Iskander L, Puopolo M, et al. Steroid hormone regulation and prognostic value of the human kallikrein gene 14 in ovarian cancer. Am J Clin Pathol. 2003;119(3):346–55.

    Article  PubMed  CAS  Google Scholar 

  5. Hinkula M, Pukkala E, Kyyrönen P, Kauppila A. Incidence of ovarian cancer of grand multiparous women–a population-based study in Finland. Gynecol Oncol. 2006;103(1):207–11.

    Article  PubMed  Google Scholar 

  6. Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer Clin. 2011;61(3):183–203.

    Article  Google Scholar 

  7. Nguyen H, Syed V. Progesterone inhibits growth and induces apoptosis in cancer cells through modulation of reactive oxygen species. Gynecol Endocrinol. 2010;3:1473–7.

    Google Scholar 

  8. Zheng H, Kavanagh JJ, Hu W, Liao Q, Fu S. Hormonal therapy in ovarian cancer. Int Gynecol Cancer. 2007;17(2):325–38.

    Article  CAS  Google Scholar 

  9. Zheng W, Lu JJ, Luo F, Zheng Y, Feng Yj, Felix JC, et al. Ovarian epithelial tumor growth promotion by follicle-stimulating hormone and inhibition of the effect by luteinizing hormone. Gynecol Oncol 2000;76(1):80–8.

  10. Veenhof CH, van der Burg ME, Nooy M, Aalders JG, Pecorelli S, Oliveira CF, et al. Phase II study of high-dose megestrol acetate in patients with advanced ovarian carcinoma. Eur Cancer. 1994;30(5):697–8.

    Article  Google Scholar 

  11. Nakano H, Yamada Y, Miyazawa T, Yoshida T. Gain-of-function microRNA screens identify miR-193a regulating proliferation and apoptosis in epithelial ovarian cancer cells. Int Oncol. 2013;42(6):1875–82.

    CAS  Google Scholar 

  12. Neijenhuis S, Bajrami I, Miller R, Lord CJ, Ashworth A. Identification of miRNA modulators to PARP inhibitor response. DNA Repair. 2013;12(6):394–402.

    Article  PubMed  CAS  Google Scholar 

  13. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67:8433–8.

    Article  PubMed  CAS  Google Scholar 

  14. Cho KR. Lessons from morphology, molecules and mice. Arch Pathol Lab Med, Ovarian cancer update. 2009;133:1775–81.

    Google Scholar 

  15. Ziebarth AJ, Landen CN Jr, Alvarez RD. Molecular/Genetic therapies in ovarian cancer: future opportunities and challenges. Clin Obstet Gynecol. 2012;55(1):156–72.

    Article  PubMed  Google Scholar 

  16. McGuire WP 3rd, Markman M. Primary ovarian cancer chemotherapy: current standards of care. Br J Cancer. 2003;89(3):S3–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Suh DH, Kim K, Kim JW. Major clinical research advances in gynecologic cancer in 2011. J Gynecol Oncol. 2011;23(1):53–64.

    Article  Google Scholar 

  18. Folsom AR, Anderson JP, Ross JA. Estrogen replacement therapy and ovarian cancer. Epidemiology. 2004;15(1):100–4.

    Article  PubMed  Google Scholar 

  19. Rodriguez C, Patel AV, Calle EE, Jacob EJ, Thun MJ. Estrogen replacement therapy and ovarian cancer mortality in a large prospective study of US women. JAMA. 2001;285:1460–5.

    Article  PubMed  CAS  Google Scholar 

  20. Riman T, Dickman PW, Nilsson S, Correia N, Nordlinder H, Magnusson CM, et al. Hormone replacement therapy and the risk of invasive epithelial ovarian cancer in Swedish women. J Natl Cancer Inst. 2002;94(7):497–504.

    Article  PubMed  CAS  Google Scholar 

  21. Chan WY, Cheung KK, Schorge JO, Huang LW, Welch WR, Bell DA, et al. Bcl-2 and p53 protein expression, apoptosis and p53 mution in human epithelial ovarian cancer. Am Pathol. 2000;156:409–17.

    Article  CAS  Google Scholar 

  22. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.

    Article  PubMed  CAS  Google Scholar 

  23. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67:8433–8.

    Article  PubMed  CAS  Google Scholar 

  24. Chung TK, Cheung TH, Huen NY, Wong KW, Lo KW, Yim SF, et al. Dysregulated microRNAs and their predicted targets associated with endometrial adenocarcinoma in Hong Kong women. Int J Cancer. 2009;124:1358–65.

    Article  PubMed  CAS  Google Scholar 

  25. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, et al. MiR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull. 2009;80:268–73.

    Article  PubMed  CAS  Google Scholar 

  26. Foekenes JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW, et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Pro Nat Acad Sci. 2008;105(35):13021–6.

    Article  Google Scholar 

  27. Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, et al. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle. 2007;6:2585–90.

    Article  PubMed  CAS  Google Scholar 

  28. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA. 2007;27:11400–5.

    Article  Google Scholar 

  29. Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 2008;111(3):478–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was granted by Jiang Su Province Natural Science Foundation (No. ZXK10010) to K. Han and the National Natural Science Foundation of China (No. 30900847) to L. Ding.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1-S3: Graphs S1 to S3 show the products of the amplification curve and primer dissolution curves for Bcl-2, let-7a, miR-34b, respectively. A single peak indicates that no non-specific amplification occurred

Supplementary material 1 (TIFF 1415 kb)

Supplementary material 2 (TIFF 248 kb)

Supplementary material 3 (TIFF 1337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y.L., Yang, Y.J., Tang, C. et al. Estrogen combined with progesterone decreases cell proliferation and inhibits the expression of Bcl-2 via microRNA let-7a and miR-34b in ovarian cancer cells. Clin Transl Oncol 16, 898–905 (2014). https://doi.org/10.1007/s12094-014-1166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-014-1166-x

Keywords

Navigation