Skip to main content

Advertisement

Log in

Snail1 correlates with patient outcomes in E-cadherin-preserved gastroesophageal junction adenocarcinoma

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The poor prognosis of gastroesophageal junction (GEJ) adenocarcinoma is largely associated with metastasis. We here report the first study to investigate the expression of epithelial-mesenchymal transition (EMT) markers Snail1 and E-cadherin in GEJ adenocarcinoma.

Methods

Snail1 and E-cadherin were detected by immunohistochemistry in a cohort of 128 patients with surgically resected GEJ adenocarcinoma. We assessed the pathologic and prognostic relevance in all patients and within clinically different preserved E-cadherin and reduced E-cadherin-expressing sub-groups.

Results

Immunoreactivity for Snail1 and E-cadherin was positive in 68 and 43 % of tumors, respectively. Snail1-positive tumors had more frequent lymph node metastasis and advanced tumor stage. E-cadherin expression was highly associated with histological differentiation, tumor size, advanced stage, presence of lymph node metastasis and distant metastasis. Patients with positive E-cadherin expression or negative Snail1 expression had significantly favorable overall survival rate. In E-cadherin-preserved tumors, the expression of Snail1 was related to lymph node metastasis, advanced stage and poor patient outcome. However, Snail1 expression had no statistically significant relationship with clinicopathologic parameters or prognosis in the reduced E-cadherin-expressing sub-group. Multivariate survival analysis identified that tumor stage [hazard ratio (HR) 2.440; 95 % confidence interval (CI) 1.216–4.896; P = 0.012], lymph node metastasis (HR 2.404; 95 % CI 1.188–4.867; P = 0.015) and gender (HR 3.244; 95 % CI 1.568–6.714; P = 0.002) were independent prognostic markers for overall survival.

Conclusions

Snail1 may act more critically in E-cadherin-positive tumors. Evaluation of Snail1 and E-cadherin in GEJ adenocarcinoma may help in assessing malignant properties and stratifying patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moehler M, Lyros O, Gockel I, Galle PR, Lang H. Multidisciplinary management of gastric and gastroesophageal cancers. WJG. 2008;14(24):3773–80.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Menges M, Hoehler T. Current strategies in systemic treatment of gastric cancer and cancer of the gastroesophageal junction. J Cancer Res Clin Oncol. 2009;135(1):29–38. doi:10.1007/s00432-008-0425-z.

    Article  PubMed  Google Scholar 

  3. Bain GH, Petty RD. Predicting response to treatment in gastroesophageal junction adenocarcinomas: combining clinical, imaging, and molecular biomarkers. Oncologist. 2010;15(3):270–84. doi:10.1634/theoncologist.2009-0293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nakamura M, Iwahashi M, Nakamori M, Naka T, Ojima T, Iida T, et al. Lower mediastinal lymph node metastasis is an independent survival factor of Siewert type II and III adenocarcinomas in the gastroesophageal junction. Am Surg. 2012;78(5):567–73.

    PubMed  Google Scholar 

  5. Maeda H, Okabayashi T, Nishimori I, Sugimoto T, Namikawa T, Dabanaka K, et al. Clinicopathologic features of adenocarcinoma at the gastric cardia: is it different from distal cancer of the stomach? J Am Coll Surg. 2008;206(2):306–10. doi:10.1016/j.jamcollsurg.2007.06.306.

    Article  PubMed  Google Scholar 

  6. Pedrazzani C, de Manzoni G, Marrelli D, Giacopuzzi S, Corso G, Minicozzi AM, et al. Lymph node involvement in advanced gastroesophageal junction adenocarcinoma. J Thorac Cardiovasc Surg. 2007;134(2):378–85. doi:10.1016/j.jtcvs.2007.03.034.

    Article  PubMed  Google Scholar 

  7. Lagarde SM, ten Kate FJ, de Boer DJ, Busch OR, Obertop H, van Lanschot JJ. Extracapsular lymph node involvement in node-positive patients with adenocarcinoma of the distal esophagus or gastroesophageal junction. Am J Surg Pathol. 2006;30(2):171–6.

    Article  PubMed  Google Scholar 

  8. Gu Y, Swisher SG, Ajani JA, Correa AM, Hofstetter WL, Liao Z, et al. The number of lymph nodes with metastasis predicts survival in patients with esophageal or esophagogastric junction adenocarcinoma who receive preoperative chemoradiation. Cancer. 2006;106(5):1017–25. doi:10.1002/cncr.21693.

    Article  PubMed  Google Scholar 

  9. Matsumoto M, Natsugoe S, Nakashima S, Sakamoto F, Okumura H, Sakita H, et al. Clinical significance of lymph node micrometastasis of pN0 esophageal squamous cell carcinoma. Cancer Lett. 2000;153(1–2):189–97.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Z, Zhang H, Kumar R. Regulation of E-cadherin. In: Breast Cancer Online. Cambridge University Press 2005. http://journals.cambridge.org/article_S1470903105003159.

  11. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21(20):3241–6. doi:10.1038/sj.onc.1205416.

    Article  CAS  PubMed  Google Scholar 

  12. Sobin LH, Compton CC. TNM seventh edition: what’s new, what’s changed: communication from the International Union Against Cancer and the American Joint Committee on Cancer. Cancer. 2010;116(22):5336–9. doi:10.1002/cncr.25537.

    Article  PubMed  Google Scholar 

  13. Zhang H, Stephens LC, Kumar R. Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clin Cancer Res. 2006;12(5):1479–86. doi:10.1158/1078-0432.CCR-05-1519.

    Article  CAS  PubMed  Google Scholar 

  14. Natsugoe S, Uchikado Y, Okumura H, Matsumoto M, Setoyama T, Tamotsu K, et al. Snail plays a key role in E-cadherin-preserved esophageal squamous cell carcinoma. Oncol Rep. 2007;17(3):517–23.

    CAS  PubMed  Google Scholar 

  15. Uchikado Y, Okumura H, Ishigami S, Setoyama T, Matsumoto M, Owaki T, et al. Increased Slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric cancer: Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2011;14(1):41–9. doi:10.1007/s10120-011-0004-x.

    Article  CAS  Google Scholar 

  16. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002;161(5):1881–91. doi:10.1016/S0002-9440(10)64464-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. He H, Chen W, Wang X, Wang C, Liu F, Shen Z, et al. Snail is an independent prognostic predictor for progression and patient survival of gastric cancer. Cancer Sci. 2012;103(7):1296–303. doi:10.1111/j.1349-7006.2012.02295.x.

    Article  CAS  PubMed  Google Scholar 

  18. Stanculescu D, Margaritescu C, Stepan A, Mitrut AO. E-cadherin in gastric carcinomas related to histological prognostic parameters. Rom J Morphol Embryology = Revue Roumaine de Morphologie et Embryologie. 2011;52(3 Suppl):1107–12.

    Google Scholar 

  19. Chan AO. E-cadherin in gastric cancer. World J Gastroenterol: WJG. 2006;12(2):199–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang ZS, Shen Y, Li X, Zhou CZ, Wen YG, Jin YB, et al. Significance and prognostic value of Gli-1 and Snail/E-cadherin expression in progressive gastric cancer. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2013;. doi:10.1007/s13277-013-1185-1.

    Google Scholar 

  21. Rosivatz E, Becker KF, Kremmer E, Schott C, Blechschmidt K, Hofler H, et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Arch: Int J Pathol. 2006;448(3):277–87. doi:10.1007/s00428-005-0118-9.

    Article  CAS  Google Scholar 

  22. Li SL, Gao DL, Zhao ZH, Liu ZW, Zhao QM, Yu JX, et al. Correlation of matrix metalloproteinase suppressor genes RECK, VEGF, and CD105 with angiogenesis and biological behavior in esophageal squamous cell carcinoma. WJG. 2007;13(45):6076–81.

    Article  PubMed  Google Scholar 

  23. Sung CO, Park CK, Kim SH. Classification of epithelial-mesenchymal transition phenotypes in esophageal squamous cell carcinoma is strongly associated with patient prognosis. Mod Pathol: Off J U. S. Can Acad Pathol, Inc. 2011;24(8):1060–8. doi:10.1038/modpathol.2011.59.

    Article  Google Scholar 

  24. Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S, et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene. 2004;23(44):7345–54. doi:10.1038/sj.onc.1207990.

    Article  CAS  PubMed  Google Scholar 

  25. Guo HM, Zhang XQ, Xu CH, Zou XP. Inhibition of invasion and metastasis of gastric cancer cells through snail targeting artificial microRNA interference. Asian Pac J Cancer Prev: APJCP. 2011;12(12):3433–8.

    PubMed  Google Scholar 

  26. Castro Alves C, Rosivatz E, Schott C, Hollweck R, Becker I, Sarbia M, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol. 2007;211(5):507–15. doi:10.1002/path.2138.

    Article  CAS  PubMed  Google Scholar 

  27. Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 2008;68(7):2329–39. doi:10.1158/0008-5472.CAN-07-5167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Olmeda D, Jorda M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene. 2007;26(13):1862–74. doi:10.1038/sj.onc.1209997.

    Article  CAS  PubMed  Google Scholar 

  29. Roy HK, Iversen P, Hart J, Liu Y, Koetsier JL, Kim Y, et al. Down-regulation of SNAIL suppresses MIN mouse tumorigenesis: modulation of apoptosis, proliferation, and fractal dimension. Mol Cancer Ther. 2004;3(9):1159–65.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China grants 30973508, 81071736 (H. Zhang) and 81171994 (L. Xie); Fund for University Students Innovation Program of Guangdong Province 1056010001 (W. Zheng).

Conflict of interest

No potential conflicts of interest are disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhang.

Additional information

H. Dong and L. Xie contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12094_2013_1149_MOESM1_ESM.pdf

Fig. S1 GEJ adenocarcinoma tissue sections immunostained with goat IgG instead of Snail1 antibody as negative control (×400). (PDF 275 kb)

12094_2013_1149_MOESM2_ESM.pdf

Fig. S2 Kaplan–Meier analysis showing the overall survival of GEJ adenocarcinoma patients categorized according to the clinical stage. Statistical significance of the difference between curves of Snail1 negative-expressing and positive-expressing patients was compared in clinical stage I to II (a) and clinical stage III (b) patient subgroups. Statistical significance of the difference between curves of E-cadherin negative-expressing and positive-expressing patients was compared in clinical stage I to II (c) and clinical stage III (d) patient subgroups. (PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Xie, L., Tang, C. et al. Snail1 correlates with patient outcomes in E-cadherin-preserved gastroesophageal junction adenocarcinoma. Clin Transl Oncol 16, 783–791 (2014). https://doi.org/10.1007/s12094-013-1149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-013-1149-3

Keywords

Navigation